Skip to main content

Enzymatic Preparation of Tetrapyrrole Intermediates

  • Protocol
Heme, Chlorophyll, and Bilins

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 4988 Accesses

Abstract

Tetrapyrroles are intensely colored natural products of vital importance in the biosphere for essential processes such as respiration and photosynthesis and are also of key importance as cofactors in a number of other enzyme reactions. Tetrapyrroles may either be linear in nature, as found in the bilins, or cyclic as in the hemes, chlorophylls, and corrins. In the cyclic tetrapyrrole group, the four centrally located pyrrole nitrogen atoms of the macrocyclic ring offer a range of possibilities for metal chelation. Modulation of the properties of the metal-lotetrapyrrole prosthetic groups by individual proteins give rise to a remarkably versatile family of powerful bio-organic reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhtar, M. and C. Jones. 1986. Preparation of stereospecifically labelled porphobilinogens. Methods Enzymol. 723:375–383.

    Article  Google Scholar 

  2. Al-Karadaghi, S., M. Hansson, S. Nikonov, B. Jonsson, and L. Hederstedt. 1997. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure 5:1501–1510.

    Article  PubMed  CAS  Google Scholar 

  3. Blanche, R, L. Debussche, D. Thibaut, J. Crouzet, and B. Cameron. 1989. Purification and characterization of S-adenosyl-L-methionine:uroporphyrinogen methyltransferase from Pseudomonas denitrificans. J. Bacteriol. 171:4222–4231.

    PubMed  CAS  Google Scholar 

  4. Bolt, E.L., L. Kryszak, J. Zeilstra-Ryalls, P.M. Shoolingin-Jordan, and M.J. Warren. 1999. Characterisation of the R. sphaeroides 5-aminolevulinic acid synthase isoenzymes, HemA and HemT, isolated from recombinant Escherichia coli. Eur. J. Biochem. 265:1–11.

    Article  Google Scholar 

  5. Dailey, H.A. 1977. Purification and characterisation of the membrane bound ferrochelatase from Spirillum itersonii. J. Bacteriol. 732:302–307.

    Google Scholar 

  6. Dailey, HA and T.A. Dailey. 1996. Protoporphyrinogen oxidase of Myxococcus xanthus. J. Biol. Chem. 277:8714–8718.

    Article  Google Scholar 

  7. Erskine, P.T., N. Senior, S. Awan, R. Lambert, G. Lewis, I.J. Tickle, M. Sarwar, P. Spencer, P. Thomas, M.J. Warren et al. 1997. X-ray structure of 5-amino-laevulinic acid dehydratase, a hybrid aldolase. Nat. Struct. Biol. 4:1025–1031.

    Article  PubMed  CAS  Google Scholar 

  8. Erskine, P.T., E. Norton, J.B. Cooper, R. Lambert, A. Coker, G. Lewis, P. Spencer, M. Sarwar, S.P. Wood, M.J. Warren, and P.M. Shoolingin-Jordan. 1999. X-Ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 A resolution. Biochemistry 38:4266–4276.

    Article  PubMed  CAS  Google Scholar 

  9. Ferreira, G.C. and J. Gong. 1995. 5-Aminolaevulinate synthase and the first step of heme biosynthesis. J. Bioenerg. Biomembr. 27:151–159.

    Article  PubMed  CAS  Google Scholar 

  10. Guo, G.G., M. Gu, and J.D. Etlinger. 1994. 240-kDa proteasome inhibitor CF-2. is identical to delta-aminolevulinic acid dehydratase. J. Biol. Chem. 269:12399–12402.

    PubMed  Google Scholar 

  11. Hansson, M. and L. Hederstedt. 1994. Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis. Eur. J. Biochem. 220:201–208.

    Article  PubMed  CAS  Google Scholar 

  12. Hunter, G.A. and G.C. Ferreira. 1995. A continuous spectrophotometric assay for 5-aminolevulinate synthase that utilizes substrate cycling. Anal. Biochem. 226:221–224.

    Article  PubMed  CAS  Google Scholar 

  13. Jaffe, E.K. 1995. Porphobilinogen synthase, the first source of heme’s asymmetry. J. Bioenerg. Biomembr. 27:169–179.

    Article  PubMed  CAS  Google Scholar 

  14. Jaffe, E.K. 2000. The porphobilinogen synthase family of metalloenzymes. Acta Crystallogr. D 56:115–128.

    Article  PubMed  CAS  Google Scholar 

  15. Jordan, P.M., G. Burton, H. Nordlüv, M.M. Schneider, L. Pryde, and A.I. Scott. 1979. J. Chem. Soc., Chem. Commun. 204–205.

    Google Scholar 

  16. Jordan, P.M. and M.J. Warren. 1987. Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett. 225:87–92.

    Article  PubMed  CAS  Google Scholar 

  17. Jordan, PM. 1991. The biosynthesis of 5-aminolaevulinic acid and its transformation into uroporphyrinogen III, p. 1–66. In A. Neuberger and L.L.M. van Deenen (Eds.), and P.M. Jordan (Vol. Ed.), New Comprehensive Biochemistry, Vol. 19, Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam.

    Google Scholar 

  18. Kannangara, C.G., R.V. Andersen, B. Pontoppidan, R. Willows, and D. von Wettstein. 1994. Enzymic and mechanistic studies on the conversion of glutamate to 5-aminolaevulinate, p. 3–25. In D.J. Chadwick, and K. Ackrill (Eds.), The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180. John Wiley & Sons, New York.

    Google Scholar 

  19. Kappas, A., S. Sassa, R.A. Galbraith, and Y. Nordmann. 1995. The porphyrias, p. 2103–2160. In C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle (Eds.), The Metabolic and Molecular Basis of Inherited Disease, 7th ed. McGraw Hill, New York.

    Google Scholar 

  20. Li, J.M., C.S. Russell, and S.D. Cosloy. 1989. The structure of the E. coli hemB gene. Gene 75:177–184.

    Article  PubMed  CAS  Google Scholar 

  21. Mauzerall, D. and S. Granick. 1956. The occurrence and determination of ·-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219:435–446.

    PubMed  CAS  Google Scholar 

  22. Medlock, A.E. and HA. Dailey. 1996. Human protoporphyrinogen oxidase is not a metalloprotein. J. Biol. Chem. 271:32507–32510.

    Article  PubMed  CAS  Google Scholar 

  23. Neidle, E.L. and S. Kaplan. 1993. Expression of Rhodobacter sphaeroides hemA and hem T genes encoding two 5-aminolaevulinic acid synthase isoenzymes. J. Bacteriol. 175:2292–2303.

    PubMed  CAS  Google Scholar 

  24. Phillips, J., EG. Whitby, J.P. Kushner, and C.P. Hill. 1997. Characterisation and crystallization of human uroporphyrinogen decarboxylase. Prot. Sci. 6:1343–1346.

    Article  CAS  Google Scholar 

  25. Raux, E., T. McVeigh, S.E. Peters, T. Leustek, and M.J. Warren. 1999. The role of Saccharomyces cerevisiae Metlp and Met8p in siroheme and cobalamin biosynthesis. Biochem. J. 338:701–708.

    Article  PubMed  CAS  Google Scholar 

  26. Scopes, R.K. 1987. Protein Purification, Principles and Practice, 2nd ed. Springer Verlag, Basel.

    Google Scholar 

  27. Shoolingin-Jordan, P.M., J.E. LeLean, and A.J. Lloyd. 1997. Continuous coupled assay for 5-aminolevulinate synthase. Methods Enzymol. 281:309–316.

    Article  PubMed  CAS  Google Scholar 

  28. Shoolingin-Jordan, P.M. and K.-M. Cheung. 1999. Biosynthesis of heme, p. 61–107. In D.H.R. Barton, K. Nakanishi, and O. Meth-Cohn (Eds.), and J.W. Kelly (Vol. Ed.), Comprehensive Natural Products Chemistry, Vol. 4, Amino Acids, Peptides, Porphyrins and Alkaloids. Elsevier, Amsterdam.

    Google Scholar 

  29. Smith, A.G. and W.T. Griffiths. 1993. Enzymes of chlorophyll and heme biosynthesis. Methods Plant Biochem. 9:299–343.

    CAS  Google Scholar 

  30. Spencer, J.B., N.J. Stolowich, C.A. Roessner, and A.I. Scott. 1993. The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS Lett. 335:57–60.

    Article  PubMed  CAS  Google Scholar 

  31. Spencer, P. and P.M. Jordan. 1993. Purification and characterisation of 5-aminolaevulinic acid dehydratase from E. coli and a study of reactive thiols at the metal binding domain. Biochem. J. 290:279–287.

    PubMed  CAS  Google Scholar 

  32. Thomas, S.D. and P.M. Jordan. 1986. Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K12. Nucleic Acids Res. 14:6215–6226.

    Article  PubMed  CAS  Google Scholar 

  33. Whitby, EG., J.D. Phillips, J.P. Kushner, and C.P. Hill. 1998. Crystal structure of human uroporphyrinogen decarboxylase. EMBO J. 17:2463–2471.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Warren, M.J., Shoolingin-Jordan, P.M. (2002). Enzymatic Preparation of Tetrapyrrole Intermediates. In: Smith, A.G., Witty, M. (eds) Heme, Chlorophyll, and Bilins. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-243-0:69

Download citation

  • DOI: https://doi.org/10.1385/1-59259-243-0:69

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-111-0

  • Online ISBN: 978-1-59259-243-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics