Skip to main content

Power and Sample Size Considerations in Molecular Biology

  • Protocol
Biostatistical Methods

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 184))

  • 1407 Accesses

Abstract

Sample size is an important interest of researchers in laboratory and clinical settings. The number of cases to be investigated profoundly affects the cost and duration of a study. Sample size is estimated to achieve a certain statistical power and a careful power and sample size analysis can predetermine the success of a study or experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehman, E. L. (1959) Testing Statistical Hypotheses. John Wiley & Sons, New York.

    Google Scholar 

  2. Lee, S. E. and Zelen, M. (2000) Clinical trials and sample size considerations: another perspective. Statist. Sci. 15, 95–100.

    Google Scholar 

  3. Altman, D. G. (1994) The scandal of poor medical research. Br. Med. J. 308,283–284.

    CAS  Google Scholar 

  4. Freiman, J. A., Chalmers, T. C, Smith, H., Jr., and Kuebler, R. R. (1978) The importance of beta, the Type II error and sample size in the design and interpretation of the randomized control trial. N. Engl. J. Med. 20, 690–694.

    Article  Google Scholar 

  5. Cohen, J. (1987) Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  6. SAS, Statistical Analysis System, SAS Institute Inc., SAS Campus Drive, Cary, NC 27513.

    Google Scholar 

  7. SPSS, Statistical Package, for the Social Sciences, 233 South Wacker Drive, Chicago, IL 60606.

    Google Scholar 

  8. Beahrs, O. H., Henson, D. E., Hutter, R. V. P., Kennedy. (ed.) (1993) Handbook for Staging of Cancer. J. B. Lippincott, Philadelphia.

    Google Scholar 

  9. Kraemer, H. C. and Thiemann, S. (1987) How Many Subjects? Statistical Power Analysis in Research. SAGE, Newbury Park, CA, pp. 81–83.

    Google Scholar 

  10. Cohen, J. (1983) The cost of dichotomization. Appl. Psychol. Meas. 78, 240–253.

    Google Scholar 

  11. Goldsmith, L. J. (1995) Pros and cons of cutpoints, in Proceedings of the Biometrics Section, Papers presented at the Annual Meeting of the American Statistical Association, Orlando, FL, August 13–17, 1995, pp. 272–276.

    Google Scholar 

  12. Hughes, M D. (1999) The use and evaluation of suggogate endpoints in clinical trails, in 54th Deming Conference on Applied Statistics, Atlantic City, NJ, December 8, 1999.

    Google Scholar 

  13. Lefkopoulou, M. and Zelen, M. (1995) Intermediate clinical events, surrogate markers and survival. Lifetime Data Anal. 1, 73–86.

    Article  PubMed  CAS  Google Scholar 

  14. Topol, E. J., Califf, R. M., VandeWerf, F., Simoons, M., et al. (1997) Perspectives on large-scale cardiovascular clinical trials for the new millennium. Circulation 95, 1072–1082.

    PubMed  CAS  Google Scholar 

  15. Cohen, J. (1990) Things I have learned (so far). Am. Psychol. 45, 1304.

    Article  Google Scholar 

  16. Beck, A. T. and Steer, R. A. (1993) Beck Depression Inventory: Manual. Psychological Corporation, San Antonio, TX.

    Google Scholar 

  17. Venter, A. and Maxwell, S. E. (1999) Maximizing power in randomized designs when N is small, in Statistical Strategies for Small Sample Research (Hoyle, R. H., ed.) SAGE, Thousand Oaks, CA, pp. 31–58.

    Google Scholar 

  18. Muller, K. E., LaVange, L. M., Ramey, S. L., and Ramey, C. T. (1992) Power calculations for general linear multivariate models including repeated measures applications. J. Am. Statist. Assoc. 87, 1209–1226.

    Article  Google Scholar 

  19. Shuster, J. J. (1990) Handbook of Sample Size Guidelines for Clinical Trials. CRC Press, Boca Raton, FL.

    Google Scholar 

  20. Lachin, J. M. (1981) Introduction to sample size determination and power analysis for clinical trials. Control Clin. Trials 2, 93–113.

    Article  PubMed  CAS  Google Scholar 

  21. Zar, J. H. (1996) Biostatistical Analysis, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  22. Dawson-Saunders, B. and Trapp, R. G. (1994) Basic and Clinical Biostatistics. Appleton & Lange, Norwalk, CT.

    Google Scholar 

  23. Meinart, C. L. (1986) Clinical Trials: Design, Conduct, and Analysis. Oxford University Press, New York.

    Google Scholar 

  24. Friedman, L. M., Furberg, C., and Demets, D. L. (1996) Fundamentals of Clinical Trials, 3rd ed. Mosby, St. Louis, MO.

    Google Scholar 

  25. Graybill, F. A. (1976) Theory and Application of the Linear Model. Duxbury Press, North Scituate, MA.

    Google Scholar 

  26. Current Index to Statistics, Editors: Michael Wichura, Klaus Hinkelmann, http://www.statindex.org/

  27. O’Brien, R. G. and Muller, K. E. (1993) Unified power analysis for t-tests through multivariate hypotheses, in Applied Analysis of Variance in the Behavioral Sciences (Edwards, L. K., ed.). Marcel Dekker, New York, pp. 297–344.

    Google Scholar 

  28. Odeh, R. E. and Fox, M. (1991) Sample Size Choice, 2nd ed. Marcel Dekker, New York.

    Google Scholar 

  29. Schoenfeld, D. A. and Richter, J. R. (1982) Nomograms for calculating the number of patients needed for a clinical trial with survival as an endpoint. Biometrics 38, 163–170.

    Article  PubMed  CAS  Google Scholar 

  30. Chow, S.-C. and Liu, J. (2000) Design and Analysis Bioavailability and Bioequivalence Studies, 2nd ed. Marcel Dekker, New York, p. 139.

    Google Scholar 

  31. Goodwin, S. N. and Berlin, J. A. (1994) The use of predicted confidence intervals when planning experiments and the misuse of power when interpreting results. Ann. Intern. Med. 121, 202.

    Google Scholar 

  32. Winer, B. J. and Michels, K. M. (1991) Statistical Principles in Experimental Design, 3rd ed. McGraw-Hill. New York, pp. 405–416.

    Google Scholar 

  33. Sham, P. (1998) Statistics in Human Genetics. Arnold, London, p. 21.

    Google Scholar 

  34. Lin, L. I.-K. (1989) A concordance correlation coefficient to evaluate reproduc-ibility. Biometrics 45, 255–268.

    Article  PubMed  CAS  Google Scholar 

  35. Lin, L. I.-K. (1992) Assay validation using the concordance correlation coefficient. Biometrics 48, 599–604.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Goldsmith, L.J. (2002). Power and Sample Size Considerations in Molecular Biology. In: Looney, S.W. (eds) Biostatistical Methods. Methods in Molecular Biology™, vol 184. Humana Press. https://doi.org/10.1385/1-59259-242-2:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-242-2:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-951-3

  • Online ISBN: 978-1-59259-242-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics