Skip to main content

Statistical Methods for Proteomics

  • Protocol
  • 1244 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 184))

Abstract

What is Proteomics? The term proteome denotes the PROTEin complement expressed by a genOME or tissue. While the genome is an invariant feature of an organism, the proteome depends on its developmental stage, the tissue considered, and environmental/experimental conditions. There are more proteins in a proteome than genes in genome (which is particularly true for eukaryotes). For instance, there are several ways to splice a gene to generate messenger ribonucleic acid (mRNA). Furthermore, proteins can undergo posttranslational alterations such as truncation at the amino- (N)- and carboxy (C)-terminus and addition of saccharide or phosphate groups.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Anderson, N. L., Hofmann, J. P., Gemmell, A., and Taylor, J. (1984) Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin. Chem. 30, 2031–2036.

    PubMed  CAS  Google Scholar 

  2. Horgan, G. W. and Glasbey, C. A. (1995) Uses of digital image analysis in electrophoresis. Electrophoresis 16, 298–305.

    Article  PubMed  CAS  Google Scholar 

  3. Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J-C., et al. (1996) From proteins to proteomes: large-scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio/Technology 14, 61–65.

    Article  PubMed  CAS  Google Scholar 

  4. Wilkins, M. R., Williams, K. L., Appel, R. D., and Hochstrasser, D. F. (eds.) (1997). Proteome Research: New Frontiers in Functional Genomics. Springer Verlag, New York.

    Google Scholar 

  5. Page, M. J., Amess, B., Rohlff, C., Stubberfield, C., and Parekh, R. (1999) Proteomics: a major new technology for the drug discovery process. Drug Discovery Today 4, 55–62.

    Article  PubMed  CAS  Google Scholar 

  6. van Holde, K. E. (1985) Physical Biochemistry, 2nd ed. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  7. Tiselius, A. W. K. (1937) A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc. 33, 524.

    Article  CAS  Google Scholar 

  8. Burtis, C. A. and Ashwood, E. R. (1999) Tietz Textbook of Clinical Chemistry, 3rd ed. WB Saunders, Philadelphia.

    Google Scholar 

  9. Kenrick, K. G. and Margolis, J. (1970) Isoelectric focusing and gradient gel electrophoresis: a two-dimensional technique. Analyt. Biochem. 33, 204–207.

    Article  PubMed  CAS  Google Scholar 

  10. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electro-phoresis in mouse tissues: a novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–234.

    PubMed  CAS  Google Scholar 

  11. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    PubMed  Google Scholar 

  12. Scheele, G. A. (1975) Two-dimensional gel analysis of soluble proteins: characterisations of guinea pig exocrine pancreatic proteins. J. Biol. Chem. 250, 5375–5385.

    PubMed  CAS  Google Scholar 

  13. Schågger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacry-lamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analyt. Biochem. 166, 368–379.

    Article  PubMed  Google Scholar 

  14. Wilkins, M. R., Sanchez, J.-C., Gooley, A. A., Appel, R. D., Humphrey-Smith, I., Hochstrasser, D. F., and Williams, K. L.(1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Engng. Rev. 13, 19–50.

    Google Scholar 

  15. Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Görg, A., Westermeier, R., and Postel, W. (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods 6, 317–339.

    Article  PubMed  CAS  Google Scholar 

  16. Hochstrasser, D. F., Frutiger, S., Paquet, N., Bairoch, A., Ravier, F., Pasquali, C., et al. (1992) Human liver protein map: A reference database established by microsequencing and gel comparison. Electrophoresis 13, 992–1001.

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.

    Article  Google Scholar 

  18. Appel, R., Hochstrasser, D. F., Roch, C., Funk, M., Muller, A. F., and Pellegrini, C. (1988) Automatic classification of two-dimensional gel electrophoresis pictures by heuristic clustering analysis: a step toward machine learning. Electrophoresis 9, 136–142.

    Article  PubMed  CAS  Google Scholar 

  19. Appel, R., Hochstrasser, D. F., Funk, M., Vargas, J. R., Pellegrini, C., Muller, A. F., and Scherrer, J. R. (1991) The MELANIE project: from a biopsy to automatic protein map interpretation by computer. Electrophoresis 12, 722–735.

    Article  PubMed  CAS  Google Scholar 

  20. Appel, R., Palagi, P. M., Walther, D., Vargas, J. R., Sanchez, J. C., Ravier, F., et al. (1997) MELANIE II—A third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface. Electrophoresis 18, 2724–2734.

    Article  PubMed  CAS  Google Scholar 

  21. Vincens, P. (1986) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part II: Spot detection and integration. Electrophoresis 7, 357–367.

    Article  CAS  Google Scholar 

  22. Vincens, P., Paris, N., Pujol, J. L., Gaboriaud, C., Rabilloud, T., Pennetier, J. L., et al. (1986) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part I: Data acquisition. Electrophoresis 7, 347–356.

    Article  CAS  Google Scholar 

  23. Vincens, P. and Tarroux, P. (1987) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part III: Spot list matching. Electrophoresis 8, 100–107.

    Article  CAS  Google Scholar 

  24. Vincens, P. and Tarroux, P. (1987) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part IV: Data base organization and management. Electrophoresis 8, 173–186.

    Article  CAS  Google Scholar 

  25. Tarroux, P., Vincens, P., and Rabilloud, T. (1987) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part V: Data analysis. Electrophoresis 8, 187–199.

    Article  CAS  Google Scholar 

  26. Miller, M. J., Vo, P. K., Nielsen, C., Geiduschek, E. P., and Xuong, N. H. (1982) Computer analysis of two-dimensional gels: semi-automatic matching. Clin. Chem. 28, 867–875.

    PubMed  CAS  Google Scholar 

  27. Skolnick, M. M., Sternberg, S. R., and Neel, J. V. (1982) Computer programs for adapting two-dimensional gels to the study of mutation. Clin. Chem. 28, 969–978.

    PubMed  CAS  Google Scholar 

  28. Vo, K. P., Miller, M. J., Geiduschek, E. P., Nielsen, C., Olson, A., and Xuong, N. H. (1981) Computer analysis of two-dimensional gels. Analyt. Biochem. 112, 258–271.

    Article  PubMed  CAS  Google Scholar 

  29. Vincens, P. (1993) Morphological grayscale reconstruction in image analysis. IEEE Trans. Image Proc. 2, 176–201.

    Article  Google Scholar 

  30. Lutin, K. W. A., Kyle, C. F., and Freeman, J. A. (1978) Quantitation of brain proteins by computer-analyzed two dimensions electrophoresis, in Electrophoresis’ 78 (Catsimpoolas, ed.), Developments in Biochemistry, vol. 2, Elsevier, NY, pp. 93–106.

    Google Scholar 

  31. Garrels, J. (1979) Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J. Biol. Chem. 254, 7961–7977.

    PubMed  CAS  Google Scholar 

  32. Taylor, J., Anderson, N. L., and Anderson, N. G. (1981) A computerized system for matching and stretching two-dimensional gel patterns represented by parameter lists, in Electrophoresis’ 81 (Allen, R. A. and Arnoud, P., eds.), W de Gruyter, NY, pp. 383–400.

    Google Scholar 

  33. Tarroux, P. (1983) Analysis of protein patterns during differentiation using 2-D electrophoresis and computer multidimensional classification. Electrophoresis 4, 63–70.

    Article  CAS  Google Scholar 

  34. Daubechies, I. (1992) Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA.

    Google Scholar 

  35. S-Plus (2000) Data Analysis Products Division, MathSoft, Seattle, WA.

    Google Scholar 

  36. Donoho, D. L. and Johnstone, I. M. (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455.

    Article  Google Scholar 

  37. Donoho, D. L. and Johnstone, I. M. (1995) Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Assoc. 90, 1200–1224.

    Article  Google Scholar 

  38. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1995) Wavelet shrinkage: asymptopia? J. Roy. Statist. Soc. Ser. B 57, 301–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Seillier-Moiseiwitsch, F., Trost, D.C., Moiseiwitsch, J. (2002). Statistical Methods for Proteomics. In: Looney, S.W. (eds) Biostatistical Methods. Methods in Molecular Biology™, vol 184. Humana Press. https://doi.org/10.1385/1-59259-242-2:051

Download citation

  • DOI: https://doi.org/10.1385/1-59259-242-2:051

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-951-3

  • Online ISBN: 978-1-59259-242-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics