Statistical Methods for Proteomics

  • Françoise Seillier-Moiseiwitsch
  • Donald C. Trost
  • Julian Moiseiwitsch
Part of the Methods in Molecular Biology™ book series (MIMB, volume 184)


What is Proteomics? The term proteome denotes the PROTEin complement expressed by a genOME or tissue. While the genome is an invariant feature of an organism, the proteome depends on its developmental stage, the tissue considered, and environmental/experimental conditions. There are more proteins in a proteome than genes in genome (which is particularly true for eukaryotes). For instance, there are several ways to splice a gene to generate messenger ribonucleic acid (mRNA). Furthermore, proteins can undergo posttranslational alterations such as truncation at the amino- (N)- and carboxy (C)-terminus and addition of saccharide or phosphate groups.


Spot Center Wavelet Family Matched Spot Primary Spot Polyaminocarboxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, N. L., Hofmann, J. P., Gemmell, A., and Taylor, J. (1984) Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin. Chem. 30, 2031–2036.PubMedGoogle Scholar
  2. 2.
    Horgan, G. W. and Glasbey, C. A. (1995) Uses of digital image analysis in electrophoresis. Electrophoresis 16, 298–305.PubMedCrossRefGoogle Scholar
  3. 3.
    Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J-C., et al. (1996) From proteins to proteomes: large-scale protein identification by two-dimensional electrophoresis and amino acid analysis. Bio/Technology 14, 61–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilkins, M. R., Williams, K. L., Appel, R. D., and Hochstrasser, D. F. (eds.) (1997). Proteome Research: New Frontiers in Functional Genomics. Springer Verlag, New York.Google Scholar
  5. 5.
    Page, M. J., Amess, B., Rohlff, C., Stubberfield, C., and Parekh, R. (1999) Proteomics: a major new technology for the drug discovery process. Drug Discovery Today 4, 55–62.PubMedCrossRefGoogle Scholar
  6. 6.
    van Holde, K. E. (1985) Physical Biochemistry, 2nd ed. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  7. 7.
    Tiselius, A. W. K. (1937) A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc. 33, 524.CrossRefGoogle Scholar
  8. 8.
    Burtis, C. A. and Ashwood, E. R. (1999) Tietz Textbook of Clinical Chemistry, 3rd ed. WB Saunders, Philadelphia.Google Scholar
  9. 9.
    Kenrick, K. G. and Margolis, J. (1970) Isoelectric focusing and gradient gel electrophoresis: a two-dimensional technique. Analyt. Biochem. 33, 204–207.PubMedCrossRefGoogle Scholar
  10. 10.
    Klose, J. (1975) Protein mapping by combined isoelectric focusing and electro-phoresis in mouse tissues: a novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–234.PubMedGoogle Scholar
  11. 11.
    O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.PubMedGoogle Scholar
  12. 12.
    Scheele, G. A. (1975) Two-dimensional gel analysis of soluble proteins: characterisations of guinea pig exocrine pancreatic proteins. J. Biol. Chem. 250, 5375–5385.PubMedGoogle Scholar
  13. 13.
    Schågger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacry-lamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analyt. Biochem. 166, 368–379.PubMedCrossRefGoogle Scholar
  14. 14.
    Wilkins, M. R., Sanchez, J.-C., Gooley, A. A., Appel, R. D., Humphrey-Smith, I., Hochstrasser, D. F., and Williams, K. L.(1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Engng. Rev. 13, 19–50.Google Scholar
  15. 15.
    Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Görg, A., Westermeier, R., and Postel, W. (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods 6, 317–339.PubMedCrossRefGoogle Scholar
  16. 16.
    Hochstrasser, D. F., Frutiger, S., Paquet, N., Bairoch, A., Ravier, F., Pasquali, C., et al. (1992) Human liver protein map: A reference database established by microsequencing and gel comparison. Electrophoresis 13, 992–1001.PubMedCrossRefGoogle Scholar
  17. 17.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.CrossRefGoogle Scholar
  18. 18.
    Appel, R., Hochstrasser, D. F., Roch, C., Funk, M., Muller, A. F., and Pellegrini, C. (1988) Automatic classification of two-dimensional gel electrophoresis pictures by heuristic clustering analysis: a step toward machine learning. Electrophoresis 9, 136–142.PubMedCrossRefGoogle Scholar
  19. 19.
    Appel, R., Hochstrasser, D. F., Funk, M., Vargas, J. R., Pellegrini, C., Muller, A. F., and Scherrer, J. R. (1991) The MELANIE project: from a biopsy to automatic protein map interpretation by computer. Electrophoresis 12, 722–735.PubMedCrossRefGoogle Scholar
  20. 20.
    Appel, R., Palagi, P. M., Walther, D., Vargas, J. R., Sanchez, J. C., Ravier, F., et al. (1997) MELANIE II—A third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface. Electrophoresis 18, 2724–2734.PubMedCrossRefGoogle Scholar
  21. 21.
    Vincens, P. (1986) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part II: Spot detection and integration. Electrophoresis 7, 357–367.CrossRefGoogle Scholar
  22. 22.
    Vincens, P., Paris, N., Pujol, J. L., Gaboriaud, C., Rabilloud, T., Pennetier, J. L., et al. (1986) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part I: Data acquisition. Electrophoresis 7, 347–356.CrossRefGoogle Scholar
  23. 23.
    Vincens, P. and Tarroux, P. (1987) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part III: Spot list matching. Electrophoresis 8, 100–107.CrossRefGoogle Scholar
  24. 24.
    Vincens, P. and Tarroux, P. (1987) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part IV: Data base organization and management. Electrophoresis 8, 173–186.CrossRefGoogle Scholar
  25. 25.
    Tarroux, P., Vincens, P., and Rabilloud, T. (1987) HERMeS: a second generation approach to the automatic analysis of two-dimensional electrophoresis gels. Part V: Data analysis. Electrophoresis 8, 187–199.CrossRefGoogle Scholar
  26. 26.
    Miller, M. J., Vo, P. K., Nielsen, C., Geiduschek, E. P., and Xuong, N. H. (1982) Computer analysis of two-dimensional gels: semi-automatic matching. Clin. Chem. 28, 867–875.PubMedGoogle Scholar
  27. 27.
    Skolnick, M. M., Sternberg, S. R., and Neel, J. V. (1982) Computer programs for adapting two-dimensional gels to the study of mutation. Clin. Chem. 28, 969–978.PubMedGoogle Scholar
  28. 28.
    Vo, K. P., Miller, M. J., Geiduschek, E. P., Nielsen, C., Olson, A., and Xuong, N. H. (1981) Computer analysis of two-dimensional gels. Analyt. Biochem. 112, 258–271.PubMedCrossRefGoogle Scholar
  29. 29.
    Vincens, P. (1993) Morphological grayscale reconstruction in image analysis. IEEE Trans. Image Proc. 2, 176–201.CrossRefGoogle Scholar
  30. 30.
    Lutin, K. W. A., Kyle, C. F., and Freeman, J. A. (1978) Quantitation of brain proteins by computer-analyzed two dimensions electrophoresis, in Electrophoresis’ 78 (Catsimpoolas, ed.), Developments in Biochemistry, vol. 2, Elsevier, NY, pp. 93–106.Google Scholar
  31. 31.
    Garrels, J. (1979) Two-dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J. Biol. Chem. 254, 7961–7977.PubMedGoogle Scholar
  32. 32.
    Taylor, J., Anderson, N. L., and Anderson, N. G. (1981) A computerized system for matching and stretching two-dimensional gel patterns represented by parameter lists, in Electrophoresis’ 81 (Allen, R. A. and Arnoud, P., eds.), W de Gruyter, NY, pp. 383–400.Google Scholar
  33. 33.
    Tarroux, P. (1983) Analysis of protein patterns during differentiation using 2-D electrophoresis and computer multidimensional classification. Electrophoresis 4, 63–70.CrossRefGoogle Scholar
  34. 34.
    Daubechies, I. (1992) Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA.Google Scholar
  35. 35.
    S-Plus (2000) Data Analysis Products Division, MathSoft, Seattle, WA.Google Scholar
  36. 36.
    Donoho, D. L. and Johnstone, I. M. (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455.CrossRefGoogle Scholar
  37. 37.
    Donoho, D. L. and Johnstone, I. M. (1995) Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Assoc. 90, 1200–1224.CrossRefGoogle Scholar
  38. 38.
    Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1995) Wavelet shrinkage: asymptopia? J. Roy. Statist. Soc. Ser. B 57, 301–369.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Françoise Seillier-Moiseiwitsch
    • 1
  • Donald C. Trost
    • 2
  • Julian Moiseiwitsch
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of MarylandBaltimore
  2. 2.Signal ProcessingClinical Technology, Pfizer Global Research and DevelopmentGroton
  3. 3.Department of Endodontics, School of DentistryUniversity of MarylandBaltimore

Personalised recommendations