Skip to main content

Embryonic Stem Cells as a Model for Studying Osteoclast Lineage Development

  • Protocol
  • 1055 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 185))

Abstract

Osteoclasts are cells specialized to resorb bone (1,2). They originate from hematopoietic progenitors (3,4), which are widely distributed throughout the body. Osteoclast progenitors differentiate into cells that are positive for calcitonin receptor and tartrate-resistant acid phosphatase (TRAP), which are specific markers for this lineage, and then they fuse with each other and form fully functional multinucleated large cells (1,2) (Fig. 1). TRAP-positive osteoclasts are found tightly attached to bone matrix (1,2). Two cytokines, macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB (RANK) ligand (RANKL; also known as OPGL, ODF, and TRANCE), are known to be responsible for this differentiation (57). In this chapter, we describe the procedure for the induction of differentiation into the osteoclast lineage from murine embryonic stem (ES) cells (8). We utilize co-culture systems with stromal cell lines, that is, bone marrow-derived ST2 cells (9) or newborn calvaria-derived M-CSF-deficient OP9 cells (10). M-CSF is produced constitutively by ST2, and the expression of RANKL is induced on ST2 by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and dexamethasone (Dex) (6).

Scheme describing the development of osteoclast lineage. The essential molecules expressed in this lineage are indicated at the stage where maturation is arrested by the loss of function. The cells positive for TRAP are shaded.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mundy, G. R. and Roodman, G. D. (1987) Osteoclast ontogeny and function. Bone Miner. Res. 5, 209–279.

    Google Scholar 

  2. Suda, T., Udagawa, N., and Takahashi, N. (1996) Cells of bone: osteoclast generation, in Principles of bone biology (Bilezikian, J. P., Raisz, L. G., and Roden, G. A., eds.), Academic Press, New York, NY, pp. 87–102.

    Google Scholar 

  3. Ash, P., Loutit, J. F., and Townsend, K. M. (1980) Osteoclasts derived from haematopoietic stem cells. Nature 283, 669–670.

    Article  PubMed  CAS  Google Scholar 

  4. Hayashi, S.-I., Yamane, T., Miyamoto, A., Hemmi, H., Tagaya, H., Tanio, Y, et al. (1998) Commitment and differentiation of stem cells to the osteoclast lineage. Biochem. Cell Biol. 76, 911–922.

    Article  PubMed  CAS  Google Scholar 

  5. Yoshida, H., Hayashi, S.-I., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.

    Article  PubMed  CAS  Google Scholar 

  6. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S.-I., et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597–3602.

    Article  PubMed  CAS  Google Scholar 

  7. Lacey, D. L., Timms, E., Tan, H.-L., Kelley, M. J., Dunstan, C. R., Burgess, T., et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176.

    Article  PubMed  CAS  Google Scholar 

  8. Yamane, T, Kunisada, T., Yamazaki, H., Era, T, Nakano, T, and Hayashi, S. I. (1997) Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c-kit dependent. Blood 90, 3516–3523.

    PubMed  CAS  Google Scholar 

  9. Ogawa, M., Nishikawa, S., Ikuta, K., Yamamura, F., Naito, M., Takahashi, K., and Nishikawa, S.-I. (1988) B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST2: B cell progenitor develops first in the embryonal body rather than in the yolk sac. EMBO J. 7, 1337–1343.

    PubMed  CAS  Google Scholar 

  10. Kodama, H., Nose, M., Niida, S., Nishikawa, S., and Nishikawa, S.-I. (1994) Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Exp. Hematol. 22, 979–984.

    PubMed  CAS  Google Scholar 

  11. Nakano, T., Kodama, H., and Honjo, T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  12. Yamane, T, Kunisada, T, Yamazaki, H., Nakano, T, Orkin, S. H., and Hayashi, S.-I. (2000) Sequential requirements for SCL/tal-1, GATA-2, M-CSF, and osteoclast differentiation factor/osteoprotegerin ligand in osteoclast development. Exp. Hematol. 28, 833–840.

    Article  PubMed  CAS  Google Scholar 

  13. Doetschman, T. C, Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  14. Li, E., Bestor, T. H., and Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  15. Robertson, E., Bradley, A., Kuehn, M., and Evans, M. (1986) Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445–448.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Yamane, T., Kunisada, T., Hayashi, SI. (2002). Embryonic Stem Cells as a Model for Studying Osteoclast Lineage Development. In: Turksen, K. (eds) Embryonic Stem Cells. Methods in Molecular Biology™, vol 185. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-241-4:97

Download citation

  • DOI: https://doi.org/10.1385/1-59259-241-4:97

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-881-3

  • Online ISBN: 978-1-59259-241-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics