Skip to main content

Isolation of Antigen-Specific Intracellular Antibody Fragments as Single Chain Fv for Use in Mammalian Cells

  • Protocol
Embryonic Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 185))

  • 1085 Accesses

Abstract

The control of gene function by the modulation of mRNA translation, stability, or protein activity has important implications for the treatment of disease, as well as in research programs designed to study the biological role of proteins. For instance, preventing protein function in specific cell types in development can produce a phenotypic knock-out due to the effective protein loss. Antibodies are ideally suited for this purpose, as they have evolved to bind macromolecules with high affinity and can neutralize their function as a result. Ablation of protein function in vivo with antibodies has been achieved by microinjecting whole antigen-specific immunoglobulin molecules into the cell cytoplasm (1). However, complete antibody comprises four chains (two heavy and two light chains) held by interchain disulfide bonds. This is not suitable for expression from DNA vectors, as the individual chains would not assemble in the cytoplasm. Therefore, antibody fragments have been employed in the single chain Fv (scFv) format (2), which are single polypeptide chains comprising a heavy chain variable region (VH) and a light chain variable region (VL) held by a short linker sequence. ScFv folds into an antibody combining site (which binds antigen) but no effector function is present. Many uses of scFv expressed inside cells (herein called intracellular antibody or ICAbs) have been described in cell systems (3,4) and in whole organisms. For example, in vivo expression of a scFv directed against the coat protein of artichoke mottle crinkle virus has conferred resistance to viral infection in plant cells (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan, D. O. and Roth, R. A. (1988) Analysis of intracellular protein function by antibody injection. Immunol. Today 9, 84–88.

    Article  PubMed  CAS  Google Scholar 

  2. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S.-M., et al. (1988) Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  3. Wright, M., Grim, J., Deshane, J., Kim, M., Strong, T. V., Siegal, G. P., and Curiel, D. T. (1997) An intracellular anti-erbB-2 single-chain antibody is specifically cytotoxic to human breast carcinoma cells overexpressing erbB-2. Gene Ther. 4, 317–322.

    Article  PubMed  CAS  Google Scholar 

  4. Cochet, O., Kenigsberg, M., Delumeau, I., Virone-Oddos, A., Multon, M. C., Fridman, W. H., et al. (1998) Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression. Cancer Res. 58, 1170–1176.

    PubMed  CAS  Google Scholar 

  5. Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A., and Galeffi, P. (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469–472.

    Article  PubMed  CAS  Google Scholar 

  6. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  7. Sheets, M. D., Amersdorfer, P., Finnern, R., Sargent, P., Lindqvist, E., Schier, R., et al. (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.

    Article  PubMed  CAS  Google Scholar 

  8. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 54–56.

    Article  Google Scholar 

  9. Biocca, S., Ruberti, F., Tafani, M., Pierandrei-Amaldi, P., and Cattaneo, A. (1995) Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Biotechnology (N.Y.) 13, 1110–1115.

    Article  CAS  Google Scholar 

  10. Worn, A. and Pluckthun, A. (1998) An intrinsically stable antibody ScFv fragment can tolerate the loss of both disulfide bonds and fold correctly. FEBS Lett. 427, 357–361.

    Article  PubMed  CAS  Google Scholar 

  11. Visintin, M., Tse, E., Axelson, H., Rabbitts, T. H., and Cattaneo, A. (1999) Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc. Natl. Acad. Sci. USA 96, 11,723–11,728.

    Article  PubMed  CAS  Google Scholar 

  12. De Jeager, G., Fiers, E., Eeckhout, D., and Depicker, A. (2000) Analysis of the interaction between single-chain variable fragments and their antigen in a reducing intracellular environment using the two-hybrid-system. FEBS Lett. 467, 316–320.

    Article  Google Scholar 

  13. Portner-Taliana, A., Russell, M., Froning, K. J., Budworth, P. R., Comiskey, J. D., and Hoeffler, J. P. (2000) In vivo selection of single-chain antibodies using a yeast two-hybrid system. J. Immunol. Meth. 238, 161–172.

    Article  CAS  Google Scholar 

  14. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  15. Tse, E., Lobato-Caballero, M. N., Forster, A., Tanaka, T., Chung, G. T. Y., and Rabbitts, T. H. (2002) Intracellular antibody capture technology: application to selection of single chain Fv recognizing the BCR-ABL on cogenic protein. Submitted.

    Google Scholar 

  16. Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580.

    Article  PubMed  CAS  Google Scholar 

  17. Tse, E. and Rabbitts, T. H. (2000) Intracellular antibody-caspase mediated cell killing: a novel approach for application in cancer therapy. Submitted.

    Google Scholar 

  18. Buluwela, L., Forster, A., Boehm, T., and Rabbitts, T. H. (1989) A rapid method for colony screening using nylon filters. Nucl. Acids Res. 17, 452.

    Article  PubMed  CAS  Google Scholar 

  19. Harlow, E. and Lane, D. (1998) Antibodies: a laboratory manual. CHS Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tse, E., Chung, G., Rabbitts, T.H. (2002). Isolation of Antigen-Specific Intracellular Antibody Fragments as Single Chain Fv for Use in Mammalian Cells. In: Turksen, K. (eds) Embryonic Stem Cells. Methods in Molecular Biology™, vol 185. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-241-4:433

Download citation

  • DOI: https://doi.org/10.1385/1-59259-241-4:433

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-881-3

  • Online ISBN: 978-1-59259-241-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics