Skip to main content

Switching on Lineage Tracers Using Site-Specific Recombination

  • Protocol
Book cover Embryonic Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 185))

Abstract

Methods to study the establishment and distribution of embryonic cell lineages have increased our understanding of the diverse events that comprise normal development. The resultant fate maps have also provided an important framework for systematically analyzing genotype-phenotype relationships uncovered by mutagenesis. Until recently, vertebrate fate maps have been plotted principally in avian systems because of the ease of manipulating tissue in ovo. These studies, using methods comprised of injecting retroviral (1,2) or fluorescent lineage tracers (3) or of grafting quail cells into chick embryos (4), have provided the core of what we know about vertebrate development. In contrast to chicken embryos developing in eggs, mouse embryos developing in utero are much less accessible, making the established tracing methods significantly more difficult. To circumvent these difficulties, noninvasive methods have recently been developed to genetically activate lineage tracers in mice using site-specific recombination (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galileo, D. S., Gray, G. E., Owens, G. C., Majors, J., and Sanes, J. R. (1990) Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies. Proc. Natl. Acad. Sci. USA 87, 458–462.

    Article  PubMed  CAS  Google Scholar 

  2. Cepko, C. L., Ryder, E. F., Austin, C. P., Walsh, C., and Fekete, D. M. (1993) Lineage analysis using retrovirus vectors. Methods Enzymol. 225, 933–960.

    Article  PubMed  CAS  Google Scholar 

  3. Wetts, R. and Fraser, S. E. (1991) Microinjection of fluorescent tracers to study neural cell lineages. Development Suppl. 2, 1–8.

    PubMed  Google Scholar 

  4. Le Douarin, N. (1982) The Neural Crest. Cambridge University Press, Cambridge.

    Google Scholar 

  5. Dymecki, S. and Tomasiewicz, H. (1998) Using Flp-recombinase to characterize expansion of Wnt1-expressing neural progenitors in the mouse. Dev. Biol. 201, 57–65.

    Article  PubMed  CAS  Google Scholar 

  6. Zinyk, D., Mercer, E. H., Harris, E., Anderson, D. J., and Joyner, A. L. (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol. 8, 665–668.

    Article  PubMed  CAS  Google Scholar 

  7. Lakso, M., Sauer, B., Mosinger, B., Lee, E. J., Manning, R. W., Yu, S.-H., et al. (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6232–6236.

    Article  PubMed  CAS  Google Scholar 

  8. Orban, P. C., Chui, D., and Marth, J. D. (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6861–6865.

    Article  PubMed  CAS  Google Scholar 

  9. Gu, H., Marth, J. D., Orban, P. C., Mossmannand, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.

    Article  PubMed  CAS  Google Scholar 

  10. Dymecki, S. M. (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196.

    Article  PubMed  CAS  Google Scholar 

  11. Sternberg, N. and Hamilton, D. (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486.

    Article  PubMed  CAS  Google Scholar 

  12. Jayaram, M. (1985) Two-micrometer circle site-specific recombination: the minimal substrate and the possible role of flanking sequences. Proc. Natl. Acad. Sci. USA 82, 5875–5879.

    Article  PubMed  CAS  Google Scholar 

  13. Senecoff, J. F., Bruckner, R. C., and Cox, M. M. (1985) The FLP recombinase of the yeast 2-μm plasmid: characterization of its recombination site. Proc. Natl. Acad. Sci. USA 82, 7270–7274.

    Article  PubMed  CAS  Google Scholar 

  14. McLeod, M., Craft, S., and Broach, J. R. (1986) Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol. Cell. Biol. 6, 3357–3367.

    PubMed  CAS  Google Scholar 

  15. Argos, P., Landy, A., Abremski, K., Egan, J. B., Haggard-Ljungquist, E., Hoess, R. H., et al. (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 5, 433–440.

    PubMed  CAS  Google Scholar 

  16. Stark, W. M., Boocock, M. R., and Sherratt, D. J. (1992) Catalysis by site-specific recombinases. Trends Genet. 8, 432–439.

    Article  PubMed  CAS  Google Scholar 

  17. Kilby, N. J., Snaith, M. R., and Murray, J. A. H. (1993) Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421.

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez, C. I. and Dymecki, S. M. (2000) Origin of the precerebellar system. Neuron 27, 475–486.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, K. J., Dietrich, P., and Jessell, T. M. (2000) Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403, 734–740.

    Article  PubMed  CAS  Google Scholar 

  20. Sauer, B. (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Academic Press, San Diego.

    Google Scholar 

  21. Torres, R. M. and Kuhn, R. (1997) Laboratory protocols for conditional gene targeting. Oxford University Press, Oxford.

    Google Scholar 

  22. O’Gorman, S., Fox, D. T., and Wahl, G. M. (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351–1355.

    Article  PubMed  Google Scholar 

  23. Dymecki, S. M. (1996) A modular set of Flp, FRP, and lacZ fusion vectors for manipulating genes by site-specific recombination. Gene 171, 197–201.

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez, C. I., Buchholtz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., et al. (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140.

    Article  PubMed  CAS  Google Scholar 

  25. Kozak, M. (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148.

    Article  PubMed  CAS  Google Scholar 

  26. Brinster, R. L., Allen, J. M., Behringer, R. R., Gelinas, R. E., and Palmiter, R. D. (1988) Introns increase transcriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. USA 85, 836–840.

    Article  PubMed  CAS  Google Scholar 

  27. Chaffin, K. E., Beals, C. R., Wilkie, T. M., Forbush, K. A., Simon, M. I., and Perlmutter, R. M. (1990) Dissection of thymocyte signaling pathways by in vivo expression of pertussis toxin ADP-ribosyltransferase. EMBO J. 9, 3821–3829.

    PubMed  CAS  Google Scholar 

  28. Chung, J. H., Whiteley, M., and Felsenfeld, G. (1993) A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514.

    Article  PubMed  CAS  Google Scholar 

  29. Pikaart, M. J., Recillas-Targa, F., and Felsenfeld, G. (1998) Loss of transcriptional activity of a transgene is accompanied by DNA methylation and historic deacetylation and is prevented by insulators. Genes Dev. 12, 2852.

    Article  PubMed  CAS  Google Scholar 

  30. Hasty, P., Abuin, A., and Bradley, A. (2000) Gene targeting, principles, and practice in mammalian cells, in Gene Targeting: A Practical Approach (Joyner, A. L., ed.), Oxford University Press, Oxford, pp. 1–35.

    Google Scholar 

  31. Meyers, E. N., Lewandoski, M., and Martin, G. R. (1998) An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat. Genet. 18, 136–141.

    Article  PubMed  CAS  Google Scholar 

  32. Lerner, A., D’Adamio, L., Diener, A. C., Clayton, L. K., and Reinherz, E. L. (1993) CD3 zeta/eta/theta locus is colinear with and transcribed antisense to the gene encoding the transcritpion factor Oct-1. J. Immunol 151, 3152–3162.

    PubMed  CAS  Google Scholar 

  33. Jacks, T., Shih, T. S., Schmitt, E. M., Bronson, R. T., Bernards, A., and Weinberg, R. A. (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat. Genet. 7, 353–361.

    Article  PubMed  CAS  Google Scholar 

  34. Ohno, H., Goto, S., Taki, S., Shirasawa, T., Nakano, H., Miyatake, S., et al. (1994) Targeted disruption of the CD3 eta locus causes high lethality in mice: modulation of Oct-1 transcription on the opposite strand. EMBO J. 13, 1157–1165.

    PubMed  CAS  Google Scholar 

  35. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439.

    Article  PubMed  CAS  Google Scholar 

  36. Schwenk, F., Sauer, B., Kukoc, N., Hoess, R., Muller, W., Kocks, C., et al. (1997) Generation of Cre recombinase-specific monoclonal antibodies, able to characterize the pattern of Cre expression in cre-transgenic strains. J. Immunol. Methods 207, 203–212.

    Article  PubMed  Google Scholar 

  37. Gagneten, S., Le, Y., Miller, J., and Sauer, B. (1997) Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleic Acids Res. 25, 3326–3331.

    Article  PubMed  CAS  Google Scholar 

  38. Feng, G., Mellor, R. H., Bernstein, M., Keller-Peck, C., Nguyen, Q. T., Wallace, M., et al. (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–54.

    Article  PubMed  CAS  Google Scholar 

  39. Araki, K., Araki, M., Miyazaki, J.-I., and Vassalli, P. (1995) Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 160–164.

    Article  PubMed  CAS  Google Scholar 

  40. Tsien, J. Z., Chen, D. F., Gerber, D., Tom, C., Mercer, E. H., Anderson, D. J., et al. (1996) Subregion-and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  41. Michael, S. K., Brennan, J., and Robertson, E. J. (1999) Efficient gene-specific expression of cre recombinase in the mouse embryo by targeted insertion of a novel IRES-Cre cassette into endogenous loci [published erratum appears in Mech Dev 1999 Aug;86(1–2):213]. Mech. Dev. 85, 35–47.

    Article  PubMed  CAS  Google Scholar 

  42. Soriano, P. (1999) Generalized lacz expression with ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71.

    Article  PubMed  CAS  Google Scholar 

  43. Lobe, C. G., Koop, K. E., Kreppner, W., Lomeli, H., Gertsenstein, M., and Nagy, A. (1999) Z/AP, a double reporter for Cre-mediated recombination. Dev. Biol. 208, 281–292.

    Article  PubMed  CAS  Google Scholar 

  44. Maxwell, I. H., Harrison, G. S., Wood, W. M., and Maxwell, F. (1989) A DNA cassette containing a trimerized SV40 polyadenylation signal which efficiently blocks spurious plasmid-initiated transcription. BioTechniques 7, 276–280.

    PubMed  CAS  Google Scholar 

  45. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–200.

    Article  PubMed  CAS  Google Scholar 

  46. Novak, A., Guo, C., Yang, W., Nagy, A., and Lobe, C. G. (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon cre-mediated excision. Genesis 28, 147–155.

    Article  PubMed  CAS  Google Scholar 

  47. Zambrowicz, B. P., Imamoto, A., Fiering, S., Herzenberg, L. A., Kerr, W. G., and Soriano, P. (1997) Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794.

    Article  PubMed  CAS  Google Scholar 

  48. Mao, X., Fujiwara, Y., and Orkin, S. H. (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl. Acad. Sci. USA 96, 5037–5042.

    Article  PubMed  CAS  Google Scholar 

  49. Farley, F., Soriano, P., Steffen, L., and Dymecki, S. (2000) Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28, 106–110.

    Article  PubMed  CAS  Google Scholar 

  50. Fields-Berry, S. C., Halliday, A. L., and Cepko, C. L. (1992) A recombinant retrovirus encoding alkaline phosphatase confirms clonal boundary assignment in lineage analysis of murine retina. Proc. Natl. Acad. Sci. USA 89, 693–697.

    Article  PubMed  CAS  Google Scholar 

  51. Golden, J. A., and Cepko, C. L. (1996) Clones in the chick diencephalon contain multiple cell types and siblings are widely dispersed. Development 122, 65–78.

    PubMed  CAS  Google Scholar 

  52. Chen, C. M., Smith, D. M., Peters, M. A., Samson, M. E., Zitz, J., Tabin, C. J., and Cepko, C. L. (1999) Production and design of more effective avian replication-incompetent retroviral vectors. Dev. Biol. 214, 370–384.

    Article  PubMed  CAS  Google Scholar 

  53. Jiang, W. and Hunter, T. (1998) Analysis of cell-cycle profiles in transfected cells using a membrane-targeted GFP. BioTechniques 24, 349–354.

    PubMed  CAS  Google Scholar 

  54. Finley, K. D., Edeen, P. T., Foss, M., Gross, E., Ghbeish, N., Palmer, R. H., et al. (1998) Dissatisfaction encodes a tailless-like nuclear receptor expressed in a subset of CNS neurons controlling Drosophila sexual behavior. Neuron 21, 1363–1374.

    Article  PubMed  CAS  Google Scholar 

  55. Buchholz, F., Angrand, P.-O., and Stewart, A. F. (1998) Improved properties of Flp recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662.

    Article  PubMed  CAS  Google Scholar 

  56. Buchholz, F., Ringrose, L., Angrand, P.-O., Rossi, F., and Stewart, A. F. (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res. 24, 4256–4262.

    Article  PubMed  CAS  Google Scholar 

  57. Groth, A. C., Olivares, E. C., Thyagarajan, B., and Calos, M. P. (2000) A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97, 5995–6000.

    Article  PubMed  CAS  Google Scholar 

  58. Shaikh, A. C. and Sadowski, P. D. (2000) Chimeras of the Flp and Cre recombinase: tests of the mode of cleavag by Flp and Cre. J. Mol. Biol. 302, 27–48.

    Article  PubMed  CAS  Google Scholar 

  59. Kistner, A., Gossen, M. Z. F., Jerecic, J., Ullmer, C., Lybbert, H., and Bujard, H. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10933–10938.

    Article  PubMed  CAS  Google Scholar 

  60. Holzenberger, M., Zaoui, R., Leneuve, P., Hamard, G., and Le Bouc, Y. (2000) Ubiquitous postnatal loxP recombination using a doxycycline auto-inducible Cre transgene (DAI-Cre). Genesis 26, 157–159.

    Article  PubMed  CAS  Google Scholar 

  61. Logie, C. and Stewart, F. (1995) Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. USA d92, 5940–5944.

    Article  Google Scholar 

  62. Metzger, D., Clifford, J., Chiba, H., and Chambon, P. (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–6995.

    Article  PubMed  CAS  Google Scholar 

  63. Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. (1996) Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10887–10890.

    Article  PubMed  CAS  Google Scholar 

  64. Kellendonk, C., Tronche, F., Monaghan, A.-P., Angrand, P.-O., Stewart, F., and Schutz, G. (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleics Acids Res. 24, 1404–1411.

    Article  CAS  Google Scholar 

  65. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K., and McMahon, A. P. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  66. Schwenk, F., Kuhn, R., Angrand, P. O., Rajewsky, K., and Stewart, A. F. (1998) Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432.

    Article  PubMed  CAS  Google Scholar 

  67. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  68. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  PubMed  CAS  Google Scholar 

  69. Angerer, L. M. and Angerer, R. C. (1992) In situ hybridization to cellular RNA with radiolabelled RNA probes, in In Situ Hybridization: A Practical Approach (Wilkinson, D. G., ed.), IRL Press, Oxford, pp. 15–32.

    Google Scholar 

  70. Wilkinson, D. G., (1992) Whole mount in situ hybridization of vertebrate embryos, in In Situ Hybridization: A Practical Approach (Wilkinson, D. G., ed.), IRL Press, Oxford, pp. 74–83.

    Google Scholar 

  71. Riddle, R. D., Johnson, R. L., Laufer, E., and Tabin, C. (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416.

    Article  PubMed  CAS  Google Scholar 

  72. Bao, Z. Z. and Cepko, C. L. (1997) The expression and function of Notch pathway genes in the developing rat eye. J. Neurosci. 17, 1425–1434.

    PubMed  CAS  Google Scholar 

  73. Rodriguez, J. and Deinhardt, F. (1960) Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology 12, 316.

    Article  PubMed  CAS  Google Scholar 

  74. Nan, X. S., Tate, P., Li, E., and Bird, A. (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell. Biol. 16, 414–421.

    PubMed  CAS  Google Scholar 

  75. Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H., and Orkin, S. H. (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324–326.

    Article  PubMed  CAS  Google Scholar 

  76. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Extraction, purification, and analysis of messenger RNA from eukaryotic cells, in Molecular Cloning: A Laboratory Manual vol. 1. CSH Laboratory Press, Cold Spring Harbor, N.Y., pp. 7.3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Dymecki, S.M., Rodriguez, C.I., Awatramani, R.B. (2002). Switching on Lineage Tracers Using Site-Specific Recombination. In: Turksen, K. (eds) Embryonic Stem Cells. Methods in Molecular Biology™, vol 185. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-241-4:309

Download citation

  • DOI: https://doi.org/10.1385/1-59259-241-4:309

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-881-3

  • Online ISBN: 978-1-59259-241-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics