Skip to main content

Selective Neural Induction from ES Cells by Stromal Cell-Derived Inducing Activity and Its Potential Therapeutic Application in Parkinson's Disease

  • Protocol
  • 1103 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 185))

Abstract

In vertebrate embryogenesis, the primordia of the nervous systems arise from uncommitted ectoderm during gastrulation. Spemann and Mangold demonstrated that the dorsal lip of the amphibian blastopore, which gives rise mainly to axial mesoderm, emanates inductive factors that direct neural differentiation in the ectoderm. During the last decade, much progress has been made in the molecular understanding of early neural differentiation in Xenopus. Neural inducer molecules, such as chordin, noggin and follistatin, were identified, and several intracellular mediators of neural differentiation have been characterized (13). These neural inducers do not have their own receptors on target cells, instead they act by binding to and inactivating bone morphogenfic protein 4 (BMP4), which suppresses neural differentiation and promotes epidermogenesis. Noggin and chordin bind to BMP with dissociation constants comparable to that of BMP receptors to BMP (4,5). Thus, neural induction in Xenopus is controlled by a morphogenetic signaling involving a BMP activity gradient.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hemmati-Brivanlou, A. and Melton, D. (1997) Vertebrate neural induction. Annu. Rev. Neurosci. 20, 43–60.

    Article  PubMed  CAS  Google Scholar 

  2. Sasai, Y. and De Robertis, E. M. (1997) Ectodermal patterning in vertebrate embryos. Dev. Biol. 182, 5–20.

    Article  PubMed  CAS  Google Scholar 

  3. Sasai, Y. (1998) Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos. Neuron 21, 455–458.

    Article  PubMed  CAS  Google Scholar 

  4. Piccolo, S., Sasai, Y, Lu, B., and De Robertis, E. M. (1996) Dorso-ventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598.

    Article  PubMed  CAS  Google Scholar 

  5. Zimmerman, L. B., De Jesus-Escobar, J. M., and Harland, R. M. (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606.

    Article  PubMed  CAS  Google Scholar 

  6. Kawasaki, H., Mizuseki, K, Nishikawa, S., Kaneko, S., Kuwana, Y, Nakanishi, S., et al. (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40.

    Article  PubMed  CAS  Google Scholar 

  7. Kodama, H., Hagiwara, H., Sudo, H., Amagai, Y, Yokota, T., Arai, N., and Kitamura, Y (1986) MC3T3-G2/PA6 preadipocytes support in vitro proliferation of hemopoietic stem cells through a mechanism different from that of interleukin 3. J. Cell Physiol. 129, 20–26.

    Article  PubMed  CAS  Google Scholar 

  8. Kataoka, H., Takakura, N., Nishikawa, S., Tsuchida, K, Kodama, H., Kunisada, T, et al. (1997) Expressions of PDGF receptor alpha, c-Kit and Flk1 genes clustering in mouse chromosome 5 define distinct subsets of nascent mesodermal cells. Dev. Growth Differ. 39, 729–740.

    Article  PubMed  CAS  Google Scholar 

  9. Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.

    Article  PubMed  CAS  Google Scholar 

  10. Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, S.-H., Lumelsky, N., Studer, L. Auerbach, J. M., and McKay, R. D. (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cell. Nat. Biotech. 18, 675–679.

    Article  CAS  Google Scholar 

  12. Renoncourt, Y., Carroll, P., Filippi, P., Arce, V., and Alonso, S. (1998) Neurons derived in vitro from ES cells express homeoproteins characteristic of motoneurons and interneurons. Mech. Dev. 79, 185–197.

    Article  PubMed  CAS  Google Scholar 

  13. Hooper, M., Hardy, K., Handyside, A., Hunter, S., and Monk, M. (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295.

    Article  PubMed  CAS  Google Scholar 

  14. Niwa, H., Miyazaki, J., and Smith, A.G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kawasaki, H., Mizuseki, K., Sasai, Y. (2002). Selective Neural Induction from ES Cells by Stromal Cell-Derived Inducing Activity and Its Potential Therapeutic Application in Parkinson's Disease. In: Turksen, K. (eds) Embryonic Stem Cells. Methods in Molecular Biology™, vol 185. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-241-4:217

Download citation

  • DOI: https://doi.org/10.1385/1-59259-241-4:217

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-881-3

  • Online ISBN: 978-1-59259-241-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics