Embryonic Stem Cells as a Model for the Physiological Analysis of the Cardiovascular System

  • Jüyrgen Hescheler
  • Maria Wartenberg
  • Bernd K. Fleischmann
  • Kathrin Banach
  • Helmut Acker
  • Heinrich Sauer
Part of the Methods in Molecular Biology™ book series (MIMB, volume 185)


Embryonic stem (ES) cells have the potential to proliferate infinitely in vitro in an undifferentiated and pluripotent state, thereby maintaining a relatively normal and stable karyotype even with continual passaging. Remarkably, in vivo, ES cells can be reincorporated into normal embryonic development by transfer into a host blastocyst or aggregation with blastomere stage embryos. They can contribute to all tissues in the resulting chimeras including gametes. When cultivated in vitro, ES cells differentiate under appropriate cell culture conditions, i.e., in the absence of leukemia inhibitory factor (LIF) into cell types of all three germ layers: endoderm, ectoderm and mesoderm (1). However, these differentiation processes occur only when ES cells are cultivated in suspension culture in which they grow to multicellular spheroidal tissues, termed embryoid bodies (EBs).


Embryonic Stem Cell Leukemia Inhibitory Factor Embryonic Stem Cell Line Spinner Flask Multicellular Tumor Spheroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.PubMedCrossRefGoogle Scholar
  2. 2.
    Wiles, M. V. and Keller, G. (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267.PubMedGoogle Scholar
  3. 3.
    Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., and Keller, G. (1998) A common precursor for hematopoietic and endothelial cells. Development 125, 725–732.PubMedGoogle Scholar
  4. 4.
    Wartenberg, M., Gunther, J., Hescheler, J., and Sauer, H. (1998) The embryoid body as a novel in vitro assay system for antiangiogenic agents. Lab. Invest. 78, 1301–1314.PubMedGoogle Scholar
  5. 5.
    Vittet, D., Prandini, M. H., Berthier, R., Schweitzer, A., Martin-Sisteron, H., Uzan, G., and Dejana, E. (1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88, 3424–3431.PubMedGoogle Scholar
  6. 6.
    Kramer, J., Hegert, C., Guan, K., Wobus, A. M., Muller, P. K., and Rohwedel, J. (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech. Dev. 92, 193–205.PubMedCrossRefGoogle Scholar
  7. 7.
    Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.PubMedCrossRefGoogle Scholar
  8. 8.
    Strubing, C., Ahnert-Hilger, G., Shan, J., Wiedenmann, B., Hescheler, J., and Wobus, A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.PubMedCrossRefGoogle Scholar
  9. 9.
    Strubing, C., Rohwedel, J., Ahnert-Hilger, G., Wiedenmann, B., Hescheler, J., and Wobus, A. M. (1997) Development of G protein-mediated Ca2+ channel regulation in mouse embryonic stem cell-derived neurons. Eur. J. Neurosci. 9, 824–832.PubMedCrossRefGoogle Scholar
  10. 10.
    Drab, M., Haller, H., Bychkov, R., Erdmann, B., Lindschau, C., Haase, H., et al. (1997) From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J. 11, 905–915.PubMedGoogle Scholar
  11. 11.
    Rohwedel, J., Maltsev, V., Bober, E., Arnold, H. H., Hescheler, J., and Wobus, A. M. (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Westfall, M. V., Samuelson, L. C., and Metzger, J. M. (1996) Troponin I isoform expression is developmentally regulated in differentiating embryonic stem cell-derived cardiac myocytes. Dev. Dyn. 206, 24–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Metzger, J. M., Lin, W. I., and Samuelson, L. C. (1996) Vital staining of cardiac myocytes during embryonic stem cell cardiogenesis in vitro. Circ. Res. 78, 547–552.PubMedGoogle Scholar
  14. 14.
    Wobus, A. M., Wallukat, G., and Hescheler, J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173–182.PubMedCrossRefGoogle Scholar
  15. 15.
    Kolossov, E., Fleischmann, B. K., Liu, Q., Bloch, W., Viatchenko-Karpinski, S., Manzke, O., et al. (1998) Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J. Cell Biol. 143, 2045–2056.PubMedCrossRefGoogle Scholar
  16. 16.
    Ji, G. J., Fleischmann, B. K., Bloch, W., Feelisch, M., Andressen, C., Addicks, K., and Hescheler, J. (1999) Regulation of the L-type Ca2+ channel during cardiomyogenesis: switch from NO to adenylyl cyclase-mediated inhibition. FASEB J. 13, 313–324.PubMedGoogle Scholar
  17. 17.
    Abi-Gerges, N., Ji, G. J., Lu, Z. J., Fischmeister, R., Hescheler, J., and Fleischmann, B. K. (2000) Functional expression and regulation of the hyperpolarization activated non-selective cation current in embryonic stem cell-derived cardiomyocytes. J. Physiol. (Lond) 523, 377–389.CrossRefGoogle Scholar
  18. 18.
    Fishman, M. C. and Chien, K. R. (1997) Fashioning the vertebrate heart: earliest embryonic decisions. Development 124, 2099–2117.PubMedGoogle Scholar
  19. 19.
    Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M., and Hescheler, J. (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75, 233–244.PubMedGoogle Scholar
  20. 20.
    Hescheler, J., Fleischmann, B. K., Lentini, S., Maltsev, V. A., Rohwedel, J., Wobus, A. M., and Addicks, K. (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 36, 149–162.PubMedCrossRefGoogle Scholar
  21. 21.
    Laschinski, G., Vogel, R., and Spielmann, H. (1991) Cytotoxicity test using blastocyst-derived euploid embryonal stem cells: a new approach to in vitro teratogenesis screening. Reprod. Toxicol. 5, 57–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Scholz, G., Pohl, I., Genschow, E., Klemm, M., and Spielmann, H. (1999) Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tissues Organs 165, 203–211.PubMedCrossRefGoogle Scholar
  23. 23.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.PubMedCrossRefGoogle Scholar
  24. 24.
    Gryshchenko, O., Fischer, I. R., Dittrich, M., Viatchenko-Karpinski, S., Soest, J., Bohm-Pinger, M. M., et al. (1999) Role of ATP-dependent K(+) channels in the electrical excitability of early embryonic stem cell-derived cardiomyocytes. J. Cell Sci. 112, 2903–2912.PubMedGoogle Scholar
  25. 25.
    Igelmund, P., Fleischmann, B. K., Fischer, I. R., Soest, J., Gryshchenko, O., Bohm-Pinger, M. M., et al. (1999) Action potential propagation failures in long-term recordings from embryonic stem cell-derived cardiomyocytes in tissue culture. Pflugers Arch. 437, 669–679.PubMedCrossRefGoogle Scholar
  26. 26.
    Wobus, A. M., Holzhausen, H., Jakel, P., and Schoneich, J. (1984) Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp. Cell Res. 152, 212–219.PubMedCrossRefGoogle Scholar
  27. 27.
    Maltsev, V. A., Rohwedel, J., Hescheler, J., and Wobus, A. M. (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Wartenberg, M., Hescheler, J., Acker, H., Diedershagen, H., and Sauer, H. (1998) Doxorubicin distribution in multicellular prostate cancer spheroids evaluated by confocal laser scanning microscopy and the “optical probe technique.” Cytometry 31, 137–145.PubMedCrossRefGoogle Scholar
  29. 29.
    Wartenberg, M. and Acker, H. (1995) Quantitative recording of vitality patterns in living multicellular spheroids by confocal microscopy. Micron 26, 395–404.PubMedCrossRefGoogle Scholar
  30. 30.
    Sauer, H., Gunther, J., Hescheler, J., and Wartenberg, M. (2000) Thalidomide inhibits angiogenesis in embryoid bodies by the generation of hydroxyl radicals. Am. J. Pathol. 156, 151–158.PubMedCrossRefGoogle Scholar
  31. 31.
    Fassler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., et al. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. J. Cell Sci. 109, 2989–2999.PubMedGoogle Scholar
  32. 32.
    Reuter, H. (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301, 569–574.PubMedCrossRefGoogle Scholar
  33. 33.
    Trautwein, W. and Hescheler, J. (1990) Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu. Rev. Physiol. 52, 257–274.PubMedCrossRefGoogle Scholar
  34. 34.
    Maltsev, V. A., Ji, G. J., Wobus, A. M., Fleischmann, B. K., and Hescheler, J. (1999) Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ. Res. 84, 136–145.PubMedGoogle Scholar
  35. 35.
    Slotkin, T. A., Lau, C., and Seidler, F. J. (1994) Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Toxicol. Appl. Pharmacol. 129, 223–234.PubMedCrossRefGoogle Scholar
  36. 36.
    Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., and McKay, R. D. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.PubMedCrossRefGoogle Scholar
  37. 37.
    Isenberg, G. and Klockner, U. (1982) Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium.” Pflugers Arch. 395, 6–18.PubMedCrossRefGoogle Scholar
  38. 38.
    Hescheler, J., Fleischmann, B. K., Wartenberg, M., Bloch, W., Kolossov, E., Ji, G., et al. (1999) Establishment of ionic channels and signalling cascades in the embryonic stem cell-derived primitive endoderm and cardiovascular system. Cells Tissues Organs 165, 153–164.PubMedCrossRefGoogle Scholar
  39. 39.
    Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.PubMedCrossRefGoogle Scholar
  40. 40.
    Korn, S. J. and Horn, R. (1989) Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording. J. Gen. Physiol. 94, 789–812.PubMedCrossRefGoogle Scholar
  41. 41.
    Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.PubMedGoogle Scholar
  42. 42.
    Egert, U., Schlosshauer, B., Fennrich, S., Nisch, W., Fejtl, M., Knott, T., et al. (1998) A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Res. Brain Res. Protoc. 2, 229–242.PubMedCrossRefGoogle Scholar
  43. 43.
    Rohr, S., Kucera, J. P., and Kleber, A. G. (1998) Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction. Circ. Res. 83, 781–794.PubMedGoogle Scholar
  44. 44.
    Kucera, J. P., Kleber, A. G., and Rohr, S. (1998) Slow conduction in cardiac tissue, II: effects of branching tissue geometry. Circ. Res. 83, 795–805.PubMedGoogle Scholar
  45. 45.
    Morley, G. E., Vaidya, D., Samie, F. H., Lo, C, Delmar, M., and Jalife, J. (1999) Characterization of conduction in the ventricles of normal and heterozygous C×43 knockout mice using optical mapping (see comments). J. Cardiovasc. Electrophysiol. 10, 1361–1375.PubMedCrossRefGoogle Scholar
  46. 46.
    Banach, K., Egert, U., and Hescheler, J. (2000) Excitation spread between heart cells derived from embryonic stem (ES) cells. Pflugers Arch. 439(Suppl. 6), P13–P19.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Jüyrgen Hescheler
    • 1
  • Maria Wartenberg
    • 1
  • Bernd K. Fleischmann
    • 1
  • Kathrin Banach
    • 1
  • Helmut Acker
    • 1
  • Heinrich Sauer
    • 1
  1. 1.Institute of NeurophysiologyUniversity of CologneKolnGermany

Personalised recommendations