Embryonic Stem Cells as a Model to Study Cardiac, Skeletal Muscle, and Vascular Smooth Muscle Cell Differentiation

  • Anna M. Wobus
  • Kaomei Guan
  • Huang-Tian Yang
  • Kenneth R. Boheler
Part of the Methods in Molecular Biology™ book series (MIMB, volume 185)

Abstract

Embryonic stem (ES) cells, the undifferentiated cells of early embryos are established as permanent lines (1,2) and are characterized by their self-renewal capacity and the ability to retain their developmental capacity in vivo (3) and in vitro (4, 5, 6). The pluripotent properties of ES cells are the basis of gene targeting technologies used to create mutant mouse strains with inactivated genes by homologous recombination (7).

Keywords

Embryonic Stem Embryonic Stem Cell Vascular Smooth Muscle Cell Leukemia Inhibitory Factor Embryonic Stem Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential stem cells from mouse embryos. Nature 291, 154–156.CrossRefGoogle Scholar
  2. 2.
    Martin, G. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.PubMedCrossRefGoogle Scholar
  3. 3.
    Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.PubMedCrossRefGoogle Scholar
  4. 4.
    Doetschman, T. C, Eistetter, H. R., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.PubMedGoogle Scholar
  5. 5.
    Keller, G. (1995) In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869.PubMedCrossRefGoogle Scholar
  6. 6.
    Wobus, A., Rohwedel, J., Strübing, C, Jin S., Adler, K., Maltsev, V., and Hescheler J. (1997) In vitro differentiation of embryonic stem cells, in Methods in Developmental Toxicology and Biology (Klug, E. and Thiel, R., eds.), Blackwell Science, Berlin, pp. 1–17.Google Scholar
  7. 7.
    Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.PubMedCrossRefGoogle Scholar
  8. 8.
    Wobus, A. M., Wallukat, G., and Hescheler, J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173–182.PubMedCrossRefGoogle Scholar
  9. 9.
    Maltsev, V. A., Rohwedel, J., Hescheler, J., and Wobus, A. M. (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M., and Hescheler, J. (1994) Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75, 233–244.PubMedGoogle Scholar
  11. 11.
    Miller-Hance, W. C, LaCorbiere, M., Fuller, S. J., Evans, S. M., Lyons, G., Schmidt, C, et al. (1993) In vitro chamber specification during embryonic stem cell cardiogenesis. J. Biol. Chem. 268, 25244–25252.PubMedGoogle Scholar
  12. 12.
    Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.-H., Hescheler, J., and Wobus, A. M. (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101.PubMedCrossRefGoogle Scholar
  13. 13.
    Rose, O., Rohwedel, J., Reinhardt, S., Bachmann, M., Cramer, M., Rotter, M., et al. (1994) Expression of M-cadherin protein in myogenic cells during prenatal mouse development and differentiation of embryonic stem cells in culture. Dev. Dyn. 201, 245–259.PubMedCrossRefGoogle Scholar
  14. 14.
    Strübing, C, Ahnert-Hilger, G., Jin, S., Wiedenmann, B., Hescheler, J., and Wobus, A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.PubMedCrossRefGoogle Scholar
  15. 15.
    Bain, G., Kitchens, D., Yao, M., Huettner, J. E., and Gottlieb, D. I. (1995) Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357.PubMedCrossRefGoogle Scholar
  16. 16.
    Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C, Savatier, P., and Samarut, J. (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181–3188.PubMedGoogle Scholar
  17. 17.
    Okabe, S., Forsberg-Nilsson, K., Spiro, A. C, Segal, M., and McKay, R. D. G. (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiles, M. V. and Keller, G. (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267.PubMedGoogle Scholar
  19. 19.
    Hole, N. and Smith, A. G. (1994) Embryonic stem cells and hematopoiesis, in Culture of Hematopoietic Cells. (Freshney, R. I., Pragnell, I. B., and Freshney, M. G. eds.), Wiley-Liss, Inc. New York, pp. 235–249.Google Scholar
  20. 20.
    Dani, C, Smith, A. G., Dessolin, S., Leroy, P., Staccini, L., Villageois, P., et al. (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell Sci. 110, 1279–1285.PubMedGoogle Scholar
  21. 21.
    Kramer, J., Hegert, C, Guan, K., Wobus, A. M., Müller, P. K., and Rohwedel, J. (2000) Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech. Dev. 92, 193–205.PubMedCrossRefGoogle Scholar
  22. 22.
    Bagutti, C, Wobus, A. M., Fässler, R., and Watt, F. (1996) Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and β1 integrin-deficient cells. Dev. Biol. 179, 184–196.PubMedCrossRefGoogle Scholar
  23. 23.
    Risau, W, Sariola, H., Zerwes, H.-G., Sasse, J., Ekblom, P., Kemler, R., and Doetschman, T. (1988) Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development 102, 471–478.PubMedGoogle Scholar
  24. 24.
    Weitzer, G., Milner, D. J., Kim, J. U., Bradley, A., and Capetanaki, Y. (1995) Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev. Biol. 172, 422–439.PubMedCrossRefGoogle Scholar
  25. 25.
    Drab, M., Haller, H., Bychkow, R., Erdmann, B., Lindschau, C, Haase, H., et al. (1997) From totipotent embryonic stem cells to spontaneously contracting vascular smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J. 11, 905–915.PubMedGoogle Scholar
  26. 26.
    Wobus, A. M., Guan, K., Jin, S., Wellner, M.-C, Rohwedel, J., Ji, G., et al. (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 29, 1525–1539.PubMedCrossRefGoogle Scholar
  27. 27.
    Hescheler, J., Fleischmann, B. K., Lentini, S., Maltsev, V. A., Rohwedel, J., Wobus, A. M., and Addicks, K. (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 36, 149–162.PubMedCrossRefGoogle Scholar
  28. 28.
    Rohwedel, J., Guan, K., Zuschratter, W., Jin, S., Ahnert-Hilger, G., Fürst, D. O., et al. (1998) Loss of β1 integrin function results in a retardation of myogenic, but an acceleration of neuronal differentiation of embryonic stem (ES) cells in vitro. Dev. Biol. 201, 167–184.PubMedCrossRefGoogle Scholar
  29. 29.
    Fässler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., et al. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of β1 integrin. J. Cell Sci. 109, 2989–2999.PubMedGoogle Scholar
  30. 30.
    Rohwedel, J., Horak, V., Hebrok, M., Füchtbauer, E.-M., and Wobus, A. M. (1995) M-twist expression inhibits embryonic stem cell-derived myogenic differentiation in vitro. Exp. Cell Res. 220, 92–100.PubMedCrossRefGoogle Scholar
  31. 31.
    Robbins, J., Gulick, J., Sanchez, A., Howles, P., and Doetschman, T. (1990) Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 265, 11905–11909.PubMedGoogle Scholar
  32. 32.
    Sanchez, A., Jones, W. K., Gulick, J., Doetschman, T., and Robbins, J. (1991) Myosin heavy chain gene expression in mouse embryoid bodies. J. Biol. Chem. 266, 22419–22426.PubMedGoogle Scholar
  33. 33.
    Johansson, B. M. and Wiles, M. W. (1995) Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol. 15, 141–151.PubMedGoogle Scholar
  34. 34.
    Wobus, A. M., Rohwedel, J., Maltsev, V., and Hescheler, J. (1994) In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid. Roux’s Arch. Dev. Biol. 204, 36–45.CrossRefGoogle Scholar
  35. 35.
    Stewart, C. L., Gadi, I., and Bhatt, H. (1994) Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161, 626–628.PubMedCrossRefGoogle Scholar
  36. 36.
    Rohwedel, J., Sehlmeyer, U., Shan, J., Meister, A., and Wobus, A. M. (1996) Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol. Intern. 20, 579–587.CrossRefGoogle Scholar
  37. 37.
    Wobus, A. M., Kleppisch, T., Maltsev, V., and Hescheler, J. (1994) Cardiomyocyte-like cells differentiated in vitro from embryonic carcinoma cells P19 are characterized by functional expression of adrenoceptors and Ca2+ channels. In Vitro Cell. Dev. Biol. 30A, 425–434.CrossRefGoogle Scholar
  38. 38.
    Trower, M. K. and Elgar, G. S. (1994) PCR cloning using T-vectors, in Protocols for Gene Analysis. Methods in Molecular Biology, vol. 31. Humana Press, Totowa, N.J., pp. 19–33.CrossRefGoogle Scholar
  39. 39.
    Rudnicki, M. A. and McBurney M. W. (1987) Cell culture methods and induction of differentiation of embryonal carcinoma cell lines, in Teratocarcinomas and Embryonic Stem Cells—a Practical Approach (Robertson, E. J., ed.), IRL Press, Oxford, pp. 19–49.Google Scholar
  40. 40.
    Edwards, M. K. S., Harris, J. F., and McBurney, M. W. (1983) Induced muscle differentiation in an embryonal carcinoma cell line. Mol. Cell. Biol. 3, 2280–2286.PubMedGoogle Scholar
  41. 41.
    Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  42. 42.
    Isenberg, G. and Klöckner, U. (1982) Calcium-tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflügers Arch. 395, 6–18.PubMedCrossRefGoogle Scholar
  43. 43.
    Pari, G., Jardine, K., and McBurney, M. W. (1991) Multiple CArG boxes in the human cardiac actin gene promoter required for expression in embryonic cardiac muscle cells developing in vitro from embryonal cardcinoma cells. Mol. Cell. Biol. 11, 4796–4803.PubMedGoogle Scholar
  44. 44.
    Sauer, B. and Henderson, N. (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17, 147–161.PubMedCrossRefGoogle Scholar
  45. 45.
    Sauer, B. and Henderson, N. (1990) Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2, 441–449.PubMedGoogle Scholar
  46. 46.
    Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.PubMedCrossRefGoogle Scholar
  47. 47.
    Potter, H. (1988) Electroporation in biology: methods, application, and instrumentation. Anal. Biochem. 174, 361–373.PubMedCrossRefGoogle Scholar
  48. 48.
    Ramirez-Salis, R., Davis, A. C., and Bradley, A. (1993) Gene targeting in ES cells, in Guide to Techniques in Mouse Development, vol. 225. (Wassarman, P. M. and DePamphelis, M. L., eds.), Academic Press, New York, pp. 855–878.CrossRefGoogle Scholar
  49. 49.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.PubMedCrossRefGoogle Scholar
  50. 50.
    Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M., and Rogers, D. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.PubMedCrossRefGoogle Scholar
  52. 52.
    Smith, D. B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Gearing, D. P., Nicola, N. A., Metcalf, D., Foote, S., Wilson, T. A., Gough, N. M., and Williams, R. L. (1989) Production of leukemia inhibitory factor in Escherichia coli by a novel procedure and its use in maintaining embryonic stem cells in culture. BioTechnology 7, 1157–1161.Google Scholar
  54. 54.
    Robertson, E. J. (1987) Embryo-derived stem cell lines, in Teratocarcinoma and Embryonic Stem Cells—a Practical Approach (Robertson, E. J., ed.), IRL Press, Oxford, pp. 71–112.Google Scholar
  55. 55.
    Myers, T. W. and Gelfand, D. H. (1991) Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30, 7661–7666.PubMedCrossRefGoogle Scholar
  56. 56.
    Wong, H., Anderson, W. D., Cheng, T., and Riabowol, K. T. (1994): Monitoring mRNA expression by polymerase chain reaction: the “primer-dropping” method. Anal. Biochem. 223, 251–258.PubMedCrossRefGoogle Scholar
  57. 57.
    Mortensen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A., and Seidman, J. G. (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395.PubMedGoogle Scholar
  58. 58.
    Hasty, P. and Bradley, A. (1994) Gene targeting vectors for mammalian cells, in Gene Targeting—A Practical Approach (Joyner, A. L., ed.), (The Practical Approach Series). IRL Press, Oxford, pp. 1–32.Google Scholar
  59. 59.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Analysis and cloning of eukaryotic genomic DNA, in Molecular Cloning—A Laboratory Manual, 2nd ed., CSH Laboratory Press, Cold Spring Harbor, N.Y., pp. 9.34–9.37.Google Scholar
  60. 60.
    Seidman, C. E., Bloch, K. D., Klein, K. A., Smith, J. A., and Seidman, J. G. (1984) Nucleotide sequences of the human and mouse atrial natriuretic factor genes. Science 226, 1206–1209.PubMedCrossRefGoogle Scholar
  61. 61.
    Lints, T. J., Parsons, L. M., Hartley, L., Lyons, I., and Harvey, R. P. (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119, 419–431.PubMedGoogle Scholar
  62. 62.
    Montarras, D., Chelly, J., Bober, E., Arnold, H., Ott, M.-O., Gros, F., and Pinset, C. (1991) Developmental patterns in the expression of Myf5, MyoD, myogenin and MRF4 during myogenesis. New Biol. 3, 592–600.PubMedGoogle Scholar
  63. 63.
    Wang, D., Villasante, A., Lewis, S. A., and Cowan, N. J. (1986) The mammalian β-tubulin repertoire: hematopoietic expression of a novel, heterologous β-tubulin isotype. J. Cell Biol. 103, 1903–1910.PubMedCrossRefGoogle Scholar
  64. 64.
    Konecki, D. S., Brennand, J., Fuscoe, J. C., Caskey, C. T., and Chinault, A. C. (1982) Hypoxanthine-guanine phosphoribosyltransferase genes of mouse and Chinese hamster: construction and sequence analysis of cDNA recombinants. Nucleic Acids Res. 10, 6763–6775.PubMedCrossRefGoogle Scholar
  65. 65.
    Guan, K., Fürst, D. O., and Wobus, A. M. (1999) Modulation of sarcomere organization during embryonic stem cell-derived cardiomyocyte differentiation. Eur. J. Cell Biol. 87, 813–823.Google Scholar
  66. 66.
    Fürst, D. O., Osborn, M., Nave, R., and Weber, K. (1988) The organization of titinfilaments in the half-sarcomere revealed by monoclonal antibodies in immunelectron microscopy: a map of the nonrepetitive epitopes starting at the Z-line extends close to the M-line. J. Cell Biol. 106, 1563–1572.PubMedCrossRefGoogle Scholar
  67. 67.
    Obermann, W. M., Gautel, M., Steiner, F., van der Ven, P. F., Weber, K., and Fürst, D. O. (1996) The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy. J. Cell Biol. 134, 1441–1453.PubMedCrossRefGoogle Scholar
  68. 68.
    Van der Ven, P. F., Obermann, W. M., Lemka, B., Gautel, M., Weber, K., and Fürst, D. O. (2000) The characterization of muscle filamin isoforms suggests a possible role of γ-filamin/ABP-L in sarcomeric Z-disc formation. Cell Motil. Cytoskeleton 45, 149–162.PubMedCrossRefGoogle Scholar
  69. 69.
    Vinkemeier, U., Obermann, W., Weber, K., and Fürst, D. O. (1993) The globular head domain of titin extends into the center of the sarcomeric M band. cDNA cloning, epitope mapping and immunoelectron microscopy of two titin-associated proteins. J. Cell Sci. 106, 319–330.PubMedGoogle Scholar
  70. 70.
    Bader, D., Masaki, T., and Fischman, D. A. (1982) Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95, 763–770.PubMedCrossRefGoogle Scholar
  71. 71.
    Skalli, O., Gabbiani, G., Babai, F., Seemayer, T. A., Pizzolato, G., and Schurch, W. (1988) Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas. Am. J. Pathol. 130, 515–531.PubMedGoogle Scholar
  72. 72.
    Rudnicki, M. A., Jackowski, G., Saggin, L., and McBurney, M. W. (1990) Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev. Biol. 138, 348–358.PubMedCrossRefGoogle Scholar
  73. 73.
    Müller-Bardorf, M., Freitag, H., Scheffold, T., Remppis, A., Kubler, W., and Katus, H. A. (1995) Development and characterization of a rapid assay for bedside determinations of cardiac troponin T. Circulation 92, 2869–2875.Google Scholar
  74. 74.
    Crow, M. T. and Stockdale, F. E. (1986) The developmental program of fast myosin heavy chain expression in avian skeletal muscles. Dev. Biol. 118, 333–342.PubMedCrossRefGoogle Scholar
  75. 75.
    Gautel, M., Fürst, D. O., Cocco, A., and Schiaffino, S. (1998) Isoform transitions of the myosin binding protein C family in developing human and mouse muscles: lack of isoform transcomplementation in cardiac muscle. Circ. Res. 82, 124–129.PubMedGoogle Scholar
  76. 76.
    Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D., and Gabbiani, G. (1986) A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103, 2787–2796.PubMedCrossRefGoogle Scholar
  77. 77.
    Naumann, K. and Pette, D. (1994) Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation 55, 203–211.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Anna M. Wobus
    • 1
  • Kaomei Guan
    • 1
  • Huang-Tian Yang
    • 1
  • Kenneth R. Boheler
    • 1
  1. 1.In Vitro Differentiation GroupInstitute of Plant Genetics and Crop Plant ResearchGaterslebenGermany

Personalised recommendations