Methods for the Isolation and Maintenance of Murine Embryonic Stem Cells

  • Marsha L. Roach
  • John D. McNeish
Part of the Methods in Molecular Biology™ book series (MIMB, volume 185)

Abstract

Embryonic stem (ES) cells were first isolated in the 1980s by several independent groups. (1, 2, 3, 4). These investigators recognized the pluripotential nature of ES cells to differentiate into cell types of all three primary germ lineages. Gossler et al. (5) described the ability and advantages of using ES cells to produce transgenic animals (5). The next year, Thomas and Capecchi reported the ability to alter the genome of the ES cells by homologous recombination (6). Smithies and colleagues later demonstrated that ES cells, modified by gene targeting when reintroduced into blastocysts, could transmit the genetic modifications through the germline (7). Today, genetic modification of the murine genome by ES cell technology is a seminal approach to understanding the function of mammalian genes in vivo. ES cells have been reported for other mammalian species (i.e., hamster, rat, mink, pig, and cow), however, only murine ES cells have successfully transmitted the ES cell genome through the germline. Recently, interest in stem cell technology has intensified with the reporting of the isolation of primate and human ES cells (8, 9, 10, 11).

Keywords

Vortex EDTA DMSO Leukemia Recombination 

References

  1. 1.
    Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.PubMedCrossRefGoogle Scholar
  2. 2.
    Axelrod, H. R. (1984) Embryonic stem cell lines derived from blastocysts by a simplified technique. Dev. Biol. 101, 225–228.PubMedCrossRefGoogle Scholar
  3. 3.
    Wobus, A. M., Holzhausen, H., Jakel, P., and Schneich, J. (1984) Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp. Cell Res. 52, 212–219.CrossRefGoogle Scholar
  4. 4.
    Doetschman, T. C., Eistattaer, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst derived embryonic stem cell lines: formation of yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphols. 87, 27–45.Google Scholar
  5. 5.
    Gossler, A., Doetschman, T., Korn, R., Serfling, E., and Kemler, R. (1986) Transgenesis by means of blastocyst derived embryonic stem cell lines. Proc. Natl. Acad. Sci. USA 83, 9065–9069.PubMedCrossRefGoogle Scholar
  6. 6.
    Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.PubMedCrossRefGoogle Scholar
  7. 7.
    Koller, B. H., Hageman, L. J., Doetschman, T. C., Hagaman, J. R., Huang, S., Williams, P. J., et al. (1989) Germline transmission of a planned alteration made in the hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc. Natl. Acad. Sci. USA 86, 8927–8931.PubMedCrossRefGoogle Scholar
  8. 8.
    Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., and Hearn, J. P. (1995) Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844–7848.PubMedCrossRefGoogle Scholar
  9. 9.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshal, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.PubMedCrossRefGoogle Scholar
  10. 10.
    Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J., et al. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95, 13,726–13,731.PubMedCrossRefGoogle Scholar
  11. 11.
    Reubinoff, B. E., Pera, M. F., Fong, C.-Y., Trounson A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404.PubMedCrossRefGoogle Scholar
  12. 12.
    Roach, M. L., Stock, J. L., Byrum, R., Koller, B. H., and McNeish, J. D. (1995) A new embryonic stem cell line from DBA/1LacJ mice allows genetic modification in a murine model of human inflammation. Exp. Cell Res. 221, 520–525.PubMedCrossRefGoogle Scholar
  13. 13.
    Robertson, E. J. (1987) Teratocarcinomas and Embryonic Stem Cells, a Practical Approach. IRL Press, Eynsham, Oxford. pp. 76–78.Google Scholar
  14. 14.
    Hogan, B., Beddington, R., Costantini, F., and Lacy, E. (1994). Manipulating the Mouse Embryo, a Laboratory Manual. CSH Press, Cold Spring Harbor, N.Y. pp. 144–145.Google Scholar
  15. 15.
    Voss, A. K., Thomas, T., and Gruss, P. (1997) Germline chimeras from female ES cells. Exp. Cell Res. 230, 45–49.PubMedCrossRefGoogle Scholar
  16. 16.
    Longo, L., Grave, A. B., Grosveld, G. F., and Pandolfi, P. P. (1997) The chromosome make-up of mouse ES cells is predictive of somatic and germ cell chimerism. Transgenic Res. 6, 321–328.PubMedCrossRefGoogle Scholar
  17. 17.
    Rowe, W. P., Hartley, J. W., Estes, J. D., and Huebner, R. J. (1959) Studies on mouse polyoma virus infection. J. Exp. Med. 109, 379–391.PubMedCrossRefGoogle Scholar
  18. 18.
    Darfler, M. M., Dougherty, C., and Goldsborough, M. D. (1996) The mouse YES system: a novel reagent system for the evaluation of mouse chromosomes. Focus 18, 15–16.Google Scholar
  19. 19.
    Hogan, B., Beddington, R., Costantini, F., and Lacy, E. (1994). Manipulating the Mouse Embryo, a Laboratory Manual. CSH Press, Cold Spring Harbor, N.Y. pp. 311–315.Google Scholar
  20. 20.
    Cowell, J. K. (1984) A photographic representation of the variability in the G-banded structure of the chromosomes in the mouse karyotype. Chromosoma 89, 294–320.PubMedCrossRefGoogle Scholar
  21. 21.
    Wood, S. A., Allen, N. D., Rossant, J., Auerbach, A., and Nagy, A. (1993) Non-injection methods for the production of embryonic stem cell-embryo chimeras. Nature 365, 87–89.PubMedCrossRefGoogle Scholar
  22. 22.
    Liu, X., Wu, H., Loring, J., Hormuzdi, S., Disteche, C. M., Bornstein, P., and Jaenisch, R. (1997) Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germline transmission. Dev. Dyn. 209, 85–91.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2002

Authors and Affiliations

  • Marsha L. Roach
    • 1
  • John D. McNeish
    • 1
  1. 1.Pfizer Global Research and DevelopmentGenetic TechnologiesGroton

Personalised recommendations