Skip to main content

Differentiation Between Transcripts of Genes Belonging to Small Families During Fruit Ripening and Abscission

  • Protocol
Gene Probes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 179))

  • 874 Accesses

Abstract

Since its development in 1983 (1), Ribonuclease Protection Assay (RPA) has become a widely employed technique for RNA analysis. The procedure is based on hybridization of the RNA being analyzed to a labeled (nonisotopic or radioactive) antisense RNA probe with successive digestion of unhybridized RNA with a cocktail of single-strand-specific RNases (usually RNase A and T1). Only hybridized probe is protected from digestion and, after separation on a polyacrylamide gel, can be visualized on a film. As long as the probe is present in the hybridization solution in molar excess over the target message, the signal intensity is proportional to the starting amount of complementary transcript, thus enabling a quantitative analysis of gene transcription. Compared to hybridization techniques relying on the use of targets bound to a solid support (i.e., Northern analysis), RPA ensures a considerably higher sensitivity together with consequently reduced exposure time and background. Rare messages can be detected and quantitative comparisons can be performed using an internal control probe for RNA loading normalization. Furthermore, specificity of the target sequence recognition and therefore of the final signal is enhanced by the RNase digestion step. Small differences between the probe and the complementary mRNA can be in fact detected by adjusting the ribonuclease concentration so that only perfect matches will be protected. This makes RPA particularly suitable for transcription analysis of gene family members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zinn, K., DiMaio, D., and Maniatis, T. (1983) Identification of two distinct regulatory regions adjacent to the human β-interferon gene. Cell 34, 865–879.

    Article  PubMed  CAS  Google Scholar 

  2. Yip, W-K., Moore, T., and Yang, S. F. (1992) Differential accumulation of transcripts for four tomato 1-aminocyclopropane-1-carboxylate synthase homologs under various conditions. Proc. Natl. Acad. Sci. USA 89, 2475–2479.

    Article  PubMed  CAS  Google Scholar 

  3. Barry, C. S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A. J., and Grierson, D. (1996) Differential expression of 1-aminocyclopropane-1-carboxylic acid oxidase gene family of tomato. Plant J. 9, 525–535.

    Article  PubMed  CAS  Google Scholar 

  4. Kalaitzis, P., Solomos, T., and Tucker, M. L. (1997) Three different polygalacturonases are expressed in tomato leaf and flower abscission, each with a different temporal expression pattern. Plant Physiol. 113, 1303–1308.

    Article  PubMed  CAS  Google Scholar 

  5. Whittaker, D. J., Smith, G. S., and Gardner, R. C. (1997) Expression of ethylene biosynthetic genes in Actinidia chinensis fruit. Plant Mol. Biol. 34, 45–55.

    Article  PubMed  CAS  Google Scholar 

  6. Tonutti, P., Cass, L., and Christoffersen, R. C. (1995) The expression of cellulase gene family members during induced avocado fruit abscission and ripening. Plant Cell Environ. 18, 709–713.

    Article  CAS  Google Scholar 

  7. Ruperti, B., Bonghi, C., Tonutti, P., and Ramina, A. (1998) Ethylene biosynthesis in peach fruit abscission. Plant Cell Environ. 21, 731–737.

    Article  CAS  Google Scholar 

  8. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edit., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  9. Stoflet, E. S., Koeberl, D. D., Sarkar, G., and Sommer, S. S. (1988) Genomic amplification with transcript sequencing. Science 239, 491–494.

    Article  PubMed  CAS  Google Scholar 

  10. Schendorn, E. T. and Mierindorf, R. C. (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 13, 6223–6236.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Bonghi, C., Ruperti, B., Tonutti, P. (2002). Differentiation Between Transcripts of Genes Belonging to Small Families During Fruit Ripening and Abscission. In: de Muro, M.A., Rapley, R. (eds) Gene Probes. Methods in Molecular Biology, vol 179. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-238-4:223

Download citation

  • DOI: https://doi.org/10.1385/1-59259-238-4:223

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-885-1

  • Online ISBN: 978-1-59259-238-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics