Gene Probes pp 179-185 | Cite as

Colony Hybridization of Bacterial Isolates with Burkholderia cepacia-Specific Probes

  • Laura G. Leff
Part of the Methods in Molecular Biology book series (MIMB, volume 179)


Colony hybridization is a very powerful tool for the examination of bacterial isolates that have been cultured. The advantages are that it can be used rather rapidly with a high degree of specificity to look at features of large numbers of isolates (1). For Burkholderia (formerly Pseudomonas) cepacia, species-specific probes that target the 16S and 23S rDNA are available and can be easily used in colony hybridization (2 and 3, respectively). Researchers are interested in B. cepacia for several reasons: it is abundant in nature (4, 5, 6), it is valuable in bioremediation and biocontrol (7), and it is clinically important, causing disease in cystic fibrosis patients and other compromised individuals (8).


Sodium Dodecyl Sulfate Cystic Fibrosis Patient Bacterial Coloni Roche Molecular Biochemical rDNA Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Leff, L. G., Kernan, R. M., McArthur, J. V., and Shimkets, L. J. (1995) Identification of aquatic Burkholderia (Pseudomonas) cepacia by hybridization with species-specific rRNA gene probes. Appl. Environ. Microbiol. 61, 1634–1636.PubMedGoogle Scholar
  2. 2.
    Braun-Howland, E. B., Vescio, P. A., and Nierzwicki-Bauer, S. A. (1993) Use of simplified cell blot technique and 16S rRNA-directed probes for identification of common environmental isolates. Appl. Environ. Microbiol. 59, 3219–3224.PubMedGoogle Scholar
  3. 3.
    Schleifer, K. H., Amann, R., Ludwig, E., Rothemund, C., Springer, N., and Dorn, S. (1992) Nucleic acid probes for the identification and in situ detection of Pseudomonas. In Pseudomonas: Molecular Biology and Biotechnology (Galli, E., Silver, S., and Withold, B., eds.), American Society for Microbiology, Washington, DCGoogle Scholar
  4. 4.
    Leff, L. G., Leff, A. A., and Lemke, M. J. (1998) Seasonal changes in planktonic bacterial assemblages of two Ohio streams. Freshwater Biol. 39, 129–134.CrossRefGoogle Scholar
  5. 5.
    Lemke, M. J., Brown, B. J., and Leff, L. G. (1997) The response of three bacterial populations to pollution in a stream. Microb. Ecol. 34, 224–231.PubMedCrossRefGoogle Scholar
  6. 6.
    Lemke, M. J. and Leff, L. G. (1999) Bacterial populations in an anthropogenically disturbed stream: comparison of different seasons. Microb. Ecol. 38, 234–243.PubMedCrossRefGoogle Scholar
  7. 7.
    Govan, J. R. W., Hughes, J. E., and Vandamme, P. (1996) Burkholderia cepacia: medical, taxonomic, and ecological issues. J. Med. Microbiol. 45, 395–407.PubMedCrossRefGoogle Scholar
  8. 8.
    Isles, A., Maclusky, I., Corey, M., Gold, R., Prober, C., Fleming, P., and Levison, H. (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J. Pediatr.(St. Louis) 104, 206–210.CrossRefGoogle Scholar
  9. 9.
    Vandamme, P., Mahenthiralingam, E., Holmes, B., Coenye, T., Hoste, B., De Vos, P., Henry, D. and Speert, D. P. (2000) Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia Genomovar IV). J. Clin. Microbiol. 38, 1042–1047.PubMedGoogle Scholar
  10. 10.
    MuKwaya, G. M. and Welch, D. F. (1989) Subgrouping of Pseudomonas cepacia by cellular fatty acid composition. J. Clin. Microbiol. 27, 2646–2649.Google Scholar
  11. 11.
    Shimkets, L. J. and Asher, S. J. (1988) Use of recombination techniques to examine the structure of the csg locus of Myxococcus xanthus. Mol. Gen. Genet. 211, 63–71.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Laura G. Leff
    • 1
  1. 1.Department of Biological SciencesKent State UniversityKent

Personalised recommendations