Skip to main content

Genomic Mismatch Scanning for the Mapping of Genetic Traits

  • Protocol
Genomics Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 175))

  • 863 Accesses

Abstract

Genome mismatch scanning (GMS) is a rapid method of isolating regions of identity by descent (IBD) between two related individuals (15). With the availability of simple PCR techniques, vast numbers of highly informative genomewide polymorphic markers, and more recently, radiation hybrid mapping, DNA microarrays, and gene chip technology (Research Genetics, AL), GMS is a very practical shortcut to conventional genetic linkage methods. The basic procedure (Fig. 1) involves the restriction enzyme digestion of each of the genomic DNA samples from two related individuals, yielding fragment sizes up to 20 kb, followed by the methylation of one genome. Hybridization of the two genomes (one fully methylated and one fully unmethylated) results in four possible DNA hybrid fragments. Through specific restriction enzyme digestions, the fully methylated and the fully unmethylated homohybrids (both strands from the same individual) are removed. The E. coli mismatch repair enzyme selection facilitates the removal of most of the mismatch-containing heterohybrids (6,7), therefore, DNA fragments from all IBD regions are isolated on the basis of their ability to form extended mismatch-free heterohybrids (double-stranded DNA [dsDNA] molecules consisting of one strand from each of the individuals). These GMS-enriched mismatch-free heterohybrids are likely to include a disease gene locus inherited through a common ancestor.

A schematic outline of the GMS process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson, S. F., McCusker, J. H., Sander, M. A., Kee, Y., and Modrich, P. (1993) Genomic mismatch scanning: a new approach to genetic linkage mapping. Nature Genet. 4, 11–18.

    Article  PubMed  CAS  Google Scholar 

  2. Brown, P. O. (1994) Genome scanning methods. Curr. Opin. Genet. Dev. 4, 366–373.

    Article  PubMed  CAS  Google Scholar 

  3. Mirzayans, F., Mears, A. J., Guo, S.-W., Pearce, W. G., and Walter, M. A. (1997) Identification of the human chromosomal region containing the iridogoniodysgenesis anomaly locus by genomic-mismatch scanning. Am. J. Hum. Genet. 61, 111–119.

    Article  PubMed  CAS  Google Scholar 

  4. Cheung, V. G. and Nelson, S. F. (1998) Genomic mismatch scanning identifies human genomic DNA shared identical by descent. Genomics 47, 1–6.

    Article  PubMed  CAS  Google Scholar 

  5. Cheung, V. G., Gregg, J. P., Goglin-Ewens, K. J., Bandong, J., Stanley, C. A. Baker, L., Higgins, M. J., Nowak, N. J., Shows, T. B., Ewens, W. J., Nelson, S. F., and Spielman, R. S. (1998) Linkage-disequilibrium mapping without genotyping. Nature Genet. 18, 225–230.

    Article  PubMed  CAS  Google Scholar 

  6. Lahue, R. S., Au, K. G., and Modrich, P. (1989) DNA mismatch correction in a defined system. Science 245, 160–164.

    Article  PubMed  CAS  Google Scholar 

  7. Learn, B. A. and Graistrom, R. H. (1989) Methyl-directed repair of frameshift heteroduplexes in cell extracts from Escherichia coli. J. Bact. 171, 6473–6481.

    PubMed  CAS  Google Scholar 

  8. Shalon, D., Smith, S. J., and Brown, P. O. (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridisation. Genome Res. 6, 639–645.

    Article  PubMed  CAS  Google Scholar 

  9. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A., and Trent, J. M. (1996) Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nature Genet. 14, 457–460.

    Article  PubMed  CAS  Google Scholar 

  10. McAllister, L., Penland, L., and Brown, P. O. (1998) Enrichment for loci identical-by-descent between pairs of mouse or human genomes by genomic mismatch scanning. Genomics 47, 7–11.

    Article  PubMed  CAS  Google Scholar 

  11. Mears, A. J., Mirzayans, F., Gould, D. B., Pearce, W. G., Walter, M. A. (1996) Autosomal dominant iridogoniodysgenesis maps to 6p25. Am. J. Hum. Genet. 59, 1321–1327.

    PubMed  CAS  Google Scholar 

  12. Guo, S.-W. (1995) Proportion of genome shared identical by descent by relatives: concept, computation, and applications. Am. J. Hum. Genet., 56, 1468–1476.

    PubMed  CAS  Google Scholar 

  13. Kunkel, L., Smith, K., Boyer, S., Borgaorkar, D., Wachtel, S., Miller, O., Berg, W., Jones, H., and Rary, J. (1977) Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. PNAS 74, 1245–1249.

    Article  PubMed  CAS  Google Scholar 

  14. Madisen, L., Hoar, D. I., Holroyd, C. D., Crisp, M., and Hodes, M. E. (1987) The effect of storage of blood and isolated DNA on the integrity of DNA. Am. J. Med. Genet. 27, 379–390.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mirzayans, F., Walter, M.A. (2001). Genomic Mismatch Scanning for the Mapping of Genetic Traits. In: Starkey, M.P., Elaswarapu, R. (eds) Genomics Protocols. Methods in Molecular Biology™, vol 175. Humana Press. https://doi.org/10.1385/1-59259-235-X:037

Download citation

  • DOI: https://doi.org/10.1385/1-59259-235-X:037

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-774-8

  • Online ISBN: 978-1-59259-235-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics