Expression Profiling and Isolation of Differentially Expressed Genes by Indexing-Based Differential Display

  • Michael P. Starkey
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 175)

Abstract

Profiling the expression status at the level of transcription is a starting point for delineation of the function of both known and unknown gene products. In addition, the identification of genes expressed in a regionally, temporally, or environmentally specific manner is fundamental to the understanding of processes such as development, differentiation, and disease.

Keywords

Mercury Manifold Leukemia Adenosine MgCl2 

References

  1. 1.
    Mahadeva, H., Starkey, M. P., Sheikh, F. N., Mundy, C. R., and Samani, N. J. (1998) A simple and effficient method for the isolation of differentially expressed genes. J. Mol. Biol. 284, 1391–1398.PubMedCrossRefGoogle Scholar
  2. 2.
    Hubank, M. and Schatz, D. G. (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucl. Acids Res. 22, 5640–5648.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, D. R. (1992) Ligation-mediated PCR of restriction fragments from large DNA molecules. PCR Methods Appl. 2, 21–25.PubMedGoogle Scholar
  4. 4.
    Unrau, P. and Deugau, K. V. (1994) Non-cloning amplification of specific DNA fragments from whole genomic DNA digests using DNA ‘indexers.’ Gene 145, 63–169.CrossRefGoogle Scholar
  5. 5.
    Sibson, D. R. (1992) Process for categorising nucleotide sequence populations. Patent application no. PCT/GB93/01452.Google Scholar
  6. 6.
    Sibson, D. R. and Starkey, M. P. (1997) Increasing the average abundance of low abundance cDNAs by ordered subdivision of cDNA populations, in Methods in Molecular Biology, Vol. 69: cDNA Library Protocols (Cowell, I. G. and Austin, C. A., eds.), Humana, Totowa, NJ, pp. 13–32.Google Scholar
  7. 7.
    Kato, K. (1995) Description of the entire messenger-RNA population by a 3′-end cDNA fragment generated by class IIS restriction enzymes. Nucleic Acids Res. 23, 3685–3690.PubMedCrossRefGoogle Scholar
  8. 8.
    Kato, K. (1996) RNA fingerprinting by molecular indexing. Nucleic Acids Res. 24, 394–395.PubMedCrossRefGoogle Scholar
  9. 9.
    Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Homes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414.PubMedCrossRefGoogle Scholar
  10. 10.
    Prashar, Y. and Weissman, S. M. (1996) Analysis of differential gene expression by display of 3′-end restriction fragments of cDNAs. Proc. Natl. Acad. Sci. USA 93, 659–663.PubMedCrossRefGoogle Scholar
  11. 11.
    Matz, M., Usman, Shagin, D., Bogdanova, E. and Lukyanov, S. (1997) Ordered differential display: a simple method for systematic comparison of gene expression profiles. Nucleic Acids Res. 25, 2541–2542.PubMedCrossRefGoogle Scholar
  12. 12.
    Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.PubMedCrossRefGoogle Scholar
  13. 13.
    Welsh, J., Chada, K., Dalal, S. S., Cheng, R., Ralph, D., and McClelland, M. (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 20, 4965–4970.PubMedCrossRefGoogle Scholar
  14. 14.
    Chou, Q., Russell, M., Birch, D. E., Raymond, J., and Bloch, W. (1992) Prevention of pre-PCR mix-priming and primer dimerisation improves low-copy-number amplifications. Nucleic Acids Res. 20, 1717–1723.PubMedCrossRefGoogle Scholar
  15. 15.
    Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  16. 16.
    Cheung, A. L., Eberhardt, K. J., and Fischetti, V. A. (1994) A method to isolate RNA from gram-positive bacteria and mycobacteria. Anal. Biochem. 222, 511–514.PubMedCrossRefGoogle Scholar
  17. 17.
    Davidson, E. H. and Britten, R. J. (1979) Regulation of gene expression: possible role of repetitive sequences. Science 204, 1052–1059.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Michael P. Starkey
    • 1
  1. 1.UK Human Genome Mapping Project Resource CentreCambridgeUK

Personalised recommendations