DNA Arrays pp 103-116 | Cite as

Automated Genotyping Using the DNA MassArray™ Technology

  • Christian Jurinke
  • Dirk van den Boom
  • Charles R. Cantor
  • Hubert Köster
Part of the Methods in Molecular Biology™ book series (MIMB, volume 170)


The ongoing progress in establishing a reference sequence as part of the Human Genome Project (1) has revealed a new challenge: the large-scale identification and detection of intraspecies sequence variations, either between individuals or populations. The information drawn from those studies will lead to a detailed understanding of genetic and environmental contributions to the etiology of complex diseases.


Probe Reaction Probe Primer Probe Assay Hybridization Chip Ligase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L., and the members of DOE and NIH planning groups. (1998) New goals for the U.S. human genome project: 1998–2003. Science 282, 682–689.PubMedCrossRefGoogle Scholar
  2. 2.
    Botstein, D., White, D. L., Skolnick, M., and Davis, R. W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.PubMedGoogle Scholar
  3. 3.
    Weber, J. L. and May, P. E. (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396.PubMedGoogle Scholar
  4. 4.
    Collins, F. S., Guyer, M. S., and Chakravarti, A. (1997) Variations on a theme: Cataloging human DNA sequence variation. Science 278, 1580–1581.PubMedCrossRefGoogle Scholar
  5. 5.
    Kruglyak, L. (1997) The use of a genetic map of biallelic markers in linkage studies. Nat. Genet. 17, 21–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Nickerson, D. A., Taylor, S. L., Weiss, K. M., Clark, A. G., Hutchinson, R. G., Stengard, J., Salomaa, V., Vartiainen, E., Boerwinkle, E., Sing, C.F. (1998) DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genet. 19, 233–240.PubMedCrossRefGoogle Scholar
  7. 7.
    Sun, G. L., Diaz, O., Salomon, B., von Bothmer, R. (1999) Genetic diversity in Elymus caninus as revealed by isozyme, RAPD, and microsatellite markers. Genome 42, 420–431.PubMedCrossRefGoogle Scholar
  8. 8.
    Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., Watkins, P. C., Ottina, K., Wallace, M. R., and Sakaguchi, A. Y. (1983) A polymorphic DNA marker genetically linked to Huntigton’s disease. Nature 306, 234–238.PubMedCrossRefGoogle Scholar
  9. 9.
    Risch, N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273, 1516–1517.PubMedCrossRefGoogle Scholar
  10. 10.
    Risch, N. and Teng, J. (1998) The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases. Genome Res. 8, 1273–1288.PubMedGoogle Scholar
  11. 11.
    Larrey, D., Berson, A., Habersetzer, F., Tinel, M., Castot, A., Babany, G., Letteron, P., Freneaux, E., Loeper, J., and Dansette, P. (1989) Genetic predisposition to drug hepatotoxicity: role in hepatitis caused by amineptine, a tricyclic antidepressant. Hepatology 10, 168–173.PubMedCrossRefGoogle Scholar
  12. 12.
    Collins, F. S., Brooks, L. D., and Chakravarti, A. (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8, 1229–1231.PubMedGoogle Scholar
  13. 13.
    Christopoulos, T. K.(1999) Nucleic acid analysis. Anal. Chem. 71, 425R–438R.CrossRefGoogle Scholar
  14. 14.
    Hacia, J. G. (1999) Resequencing and mutational analysis using oligonucleotide microarrays. Nat. Genetics Suppl. 21, 42–47.CrossRefGoogle Scholar
  15. 15.
    Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu, K. J., Steding, A., and Becker, C. H. (1993) Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-Hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun. Mass Spectrom. 7, 142–146.PubMedCrossRefGoogle Scholar
  17. 17.
    Tang, K., Fu, D., Kötter, S., Cotter, R. J., Cantor, C. R., and Köster, H. (1995) Matrix-assisted laser desorption/ionization mass spectrometry of immobilized duplex DNA probes. Nucleic Acids Res. 23, 3126–3131.PubMedCrossRefGoogle Scholar
  18. 18.
    Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Wörl, R., and Köster, H. (1996) Analysis of ligase chain reaction products via matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 237, 174–181.PubMedCrossRefGoogle Scholar
  19. 19.
    Jurinke, C., Zöllner, B., Feucht, H.-H., Jacob, A., Kirchhübel, J., Lüchow, A., van den Boom, D., Laufs, R., and Köster, H. (1996) Detection of Hepatitis B virus DNA in serum samples via nested PCR and MALDI-TOF mass spectrometry. Genet. Anal. 13, 67–71.PubMedGoogle Scholar
  20. 20.
    Pieles, U., Zurcher, W., Schar, M., and Moser, H. E. (1993) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 21, 3191–3196.PubMedCrossRefGoogle Scholar
  21. 21.
    Köster, H., Tang, K., Fu, D. J., Braun, A., van den Boom, D., Smith, C. L., Cotter, R. J., and Cantor, C. R. (1996) A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nat. Biotechnol. 14, 1123–1129.PubMedCrossRefGoogle Scholar
  22. 22.
    Fu, D. J., Tang, K., Braun, A., Reuter, D., Darnhofer-Demar, B., Little, D. P., O’Donnell, M. J., Cantor, C. R., and Köster, H. (1998) sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry. Nature Biotechnol. 16, 381–384.CrossRefGoogle Scholar
  23. 23.
    Berkenkamp, S., Kirpekar, F., and Hillenkamp, F. (1998) Infrared MALDI mass spectrometry of large nucleic acids. Science 281, 260–262.PubMedCrossRefGoogle Scholar
  24. 24.
    Braun, A., Little, D. P., and Köster, H. (1997) Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin. Chem. 43, 1151–1158.PubMedGoogle Scholar
  25. 25.
    Braun, A., Little, D. P., Reuter, D., Muller-Mysock, B., and Köster, H. (1997) Improved analysis of microsatellites using mass spectrometry. Genomics 46, 18–23.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Christian Jurinke
    • 1
  • Dirk van den Boom
    • 1
  • Charles R. Cantor
    • 2
  • Hubert Köster
    • 2
  1. 1.SEQUENOM GmbHHamburgGermany
  2. 2.SEQUENOM Inc.San Diego

Personalised recommendations