Skip to main content

Using Electrostatics to Define the Active Site of Serratia Endonuclease

  • Protocol
Nuclease Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 160))

  • 967 Accesses

Abstract

The location of an enzyme’s active site is usually known prior to the determination of its three-dimensional structure. Analysis of sequence homology may indicate residues that are near an enzyme’s active site. Catalytic residues are often identified when site-directed mutagenesis experiments or chemical modification of residues lead to an alteration in enzyme activity. The enzyme’s three-dimensional (3D) structure is then used to supplement and interpret preceding experimental data. Occasionally, a new protein structure is solved before the active site has been located through conventional methods. Using the extracellular endonuclease from Serratia marcescens as an example, we show here how the active site of an enzyme can sometimes be determined from electrostatic analysis of its 3D structure (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, M., Tanner, J., Alpaugh, M., Benedik, M., and Krause, K. (1994) 2.1 Å structure of Serratia endonuclease suggests a mechanism for binding to double-stranded DNA. Natural Struct. Biol. 1, 461–468.

    Article  Google Scholar 

  2. Benedik, M. J. and Strych, U. (1998) Serratia marcescens and its extracellular nuclease. FEMS Microbiol. Lett. 165, 1–13.

    Article  PubMed  CAS  Google Scholar 

  3. Eisenstein, B. (1995) Enterobacteriaceae, in Principles and Practice of Infectious Diseases 4th ed. (Mandell, G. L., Bennett, J. E., and Dolin, R., eds.), Churchill Livingstone, New York, pp. 1964–1980.

    Google Scholar 

  4. Friedhoff, P., Kolmes, B., Gimadutdinow, O., Wende, W., Krause, K., and Pingoud, A. (1996) Analysis of the mechanism of the Serratia nuclease using site-directed mutagenesis. Nucleic Acids Res. 24, 2632–2639.

    Article  PubMed  CAS  Google Scholar 

  5. Filimonova, M. N., Balaban, N. P., Sharipova, F. P., and Leshchinskaia, I. B. (1980) Isolation and physico-chemical properties of homogenous nuclease from Serratia marcescens. Biokhimiia 45, 2096–2104.

    PubMed  CAS  Google Scholar 

  6. Benzon (1993) Product Specifications for Benzonase, the first industrial endonuclease. Benzon Pharma A/S, Helseholmen 1, P.O. Box 1185, DK-2650, Hvidovre, Denmark.

    Google Scholar 

  7. Feynman, R. P., Leighton, R. B., and Sands, M. (1963) The Feynman Lectures on Physics. Addison-Wesley, Reading, MA.

    Google Scholar 

  8. Lipscomb, W. N. (1982) Acceleration of reactions by enzymes. Accts. Chem. Res. 15, 232–238.

    Article  CAS  Google Scholar 

  9. Purcell, E. M. (1965) Electricity and Magnetism. McGraw Hill, New York.

    Google Scholar 

  10. Honig, B. and Nicholls, A. (1995) Classical electrostatics in biology and chemistry. Science 268, 1144–1149.

    Article  PubMed  CAS  Google Scholar 

  11. Nicholls, A., Sharp, K. A., and Honig, B. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296.

    Article  PubMed  CAS  Google Scholar 

  12. Madura, J. D., Briggs, J. M., Wade, R. C., Davis, M. E., Luty, B. A., Ilin, A., Antosiewicz, J., Gilson, M. K., Bagheri, B., Scott, L. R., and McCammon, J. A. (1995) Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Commun. 91, 57–95.

    Article  CAS  Google Scholar 

  13. Davis, M. E., Madura, J. D., Luty, B. A., and McCammon, J. A. (1991) Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Commun. 62, 187–197.

    Article  CAS  Google Scholar 

  14. Davis, M. E. and McCammon, J. A. (1990) Electrostatics in biomolecular structure and dynamics. Chem. Rev. 90, 509–521.

    Article  CAS  Google Scholar 

  15. Gilson, M. K. (1995) Theory of electrostatic interactions in macromolecules. Curr. Opin. Struct. Biol. 5, 216–223.

    Article  PubMed  CAS  Google Scholar 

  16. Warshel, A. and Papazyan, A. (1998) Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Curr. Opin. Struct. Biol. 8, 211–217.

    Article  PubMed  CAS  Google Scholar 

  17. Miller, M. D., Cai, J., and Krause, K. L. (1999) The active site of Serratia endonuclease contains a conserved magnesium-water cluster. J. Mol. Biol. 288, 975–987.

    Article  PubMed  CAS  Google Scholar 

  18. Jones, T. A. (1978) A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272.

    Article  CAS  Google Scholar 

  19. Friedhoff, P., Gimadutdinow, O., and Pingoud, A. (1994) Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Nucleic Acids Res. 22, 3280–3287.

    Article  PubMed  CAS  Google Scholar 

  20. Abola, E. E., Bernstein, F. C., Bryant, S. H., Koetzle, T. F., and Weng, J. (1987) Protein Data Bank, in Crystallographic Databases-Information Content, Software Systems, Scientific Applications (Allen, F. H., Bergerhoff, G., and Sievers, R., eds.), Data Commission of the International Union of Crystallography, Bonn/Cambridge/Chester, pp. 107–132.

    Google Scholar 

  21. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    Article  PubMed  CAS  Google Scholar 

  22. Koradi, R., Billeter, M., and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55.

    Article  CAS  Google Scholar 

  23. Nicholls, A. and Honig, B. (1991) A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Bolzmann equation. J. Comp. Chem. 12, 435–445.

    Article  CAS  Google Scholar 

  24. Jones, T. A., Zou, J.-Y., and Cowan, S. W. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallographica A47, 110–119.

    Article  Google Scholar 

  25. Nayal, M., Hitz, B., and Honig, B. (1999) GRASS Browser: Graphical Representation and Analysis of Structure Server. Columbia University, New York. http://trantor.bioc. columbia.edu/GRASS/surfserv_enter.cgi.

    Google Scholar 

  26. MDL (1999) MDL Worldwide Services: Chime Free Support. MDL Information Systems, San Leandro, CA. http://www.mdli.com/support/chime/chimefree.htm.

    Google Scholar 

  27. Hartman, J. and Wernecke, J. (1996) The VRML 2.0 Handbook: Building Moving Worlds on the Web. Addison-Wesley, Reading, MA.

    Google Scholar 

  28. SGI (1999) SGI-Cosmo Products References. Silicon Graphics, Inc., Mountain View, CA. http://www.sgi.com/software/cosmo/redirect.html.

    Google Scholar 

  29. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  30. Jorgensen, W. L. and Tirado-Rives, J. (1988) The OPLS potential function for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666.

    Article  CAS  Google Scholar 

  31. Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A. (1986) An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 7, 230.

    Article  CAS  Google Scholar 

  32. Sitkoff, D., Sharp, K. A., and Honig, B. (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978–1988.

    Article  CAS  Google Scholar 

  33. Miller, M. and Krause, K. (1996) Identification of the Serratia endonuclease dimer: structural basis and implications for catalysis. Protein Sci. 5, 24–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Krause, K.L., Miller, M.D. (2001). Using Electrostatics to Define the Active Site of Serratia Endonuclease. In: Schein, C.H. (eds) Nuclease Methods and Protocols. Methods in Molecular Biology™, vol 160. Humana Press. https://doi.org/10.1385/1-59259-233-3:249

Download citation

  • DOI: https://doi.org/10.1385/1-59259-233-3:249

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-679-6

  • Online ISBN: 978-1-59259-233-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics