Skip to main content

Quantitating mRNAs with Relative and Competitive RT-PCR

  • Protocol
Nuclease Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 160))

Abstract

Reverse transcription coupled with the polymerase chain reaction (RT-PCR), permits amplification of cellular RNA. Gene expression can be measured even when the message copy number is very low (1–10 copies per cell) (1) or the sample size is very small (1–1000 cells) (2,3). In RT-PCR, an RNA sample is primed with gene-specific primers, oligo dT, or random primers, and copied into a complementary DNA sequence, or cDNA, using a retroviral reverse transcriptase. The first-strand cDNA from the RT amplification of cellular RNA. Gene expression can be measured even when the message copy number is very low (1–10 copies per cell) (1) or the sample size is very small (1–1000 cells) (2,3). In RT-PCR, an RNA sample is primed with gene-specific primers, oligo dT, or random primers, and copied into a complementary DNA sequence, or cDNA, using a retroviral reverse transcriptase. The first-strand cDNA from the RT reaction is subsequently amplified using gene-specific primers and a thermostable DNA polymerase (e.g., Taq polymerase).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawasaki, E. S. (1990) Amplification of RNA, in PCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic Press, London and New York, pp. 21–27.

    Google Scholar 

  2. Kelso, A., Groves, P., Ramm, L., and Doyle A. G. (1999) Single-cell analysis by RT-PCR reveals differential expression of multiple type 1 and 2 cytokine genes among cells within polarized CD4+ T cell populations. Int. Immunol. 11(4), 617–621.

    Article  PubMed  CAS  Google Scholar 

  3. Malnic, B., Hirono, J., Sato, T., and Buck, L. B. (1999) Combinatorial receptor codes for odors. Cell 96(5), 713–723.

    Article  PubMed  CAS  Google Scholar 

  4. Uchide, T., Masuda, H., Mitsui, Y., and Saida, K. (1999) Gene expression of vasoactive intestinal contractor/endothelin-2 in ovary, uterus, and embryo: comprehensive gene expression profiles of the endothelin ligand-receptor system revealed by semi-quantitative reverse transcription-polymerase chain reaction analysis in adult mouse tissues and during late embryonic development. J. Mol. Endocrinol. 22(2), 161–171.

    Article  PubMed  CAS  Google Scholar 

  5. Wong, H., Anderson, W. D., Cheng, T., and Riabowol, K. T. (1994) Monitoring mRNA expression by polymerase chain reaction: the “primer dropping” method. Anal. Biochem. 223, 251–258.

    Article  PubMed  CAS  Google Scholar 

  6. Freeman, W. M., Walker, S. J., and Vrana, K. E. (1999) Quantitative RT-PCR: pitfalls and potential. BioTechniques 26, 112–125.

    PubMed  CAS  Google Scholar 

  7. Wang, S., Murtagh, J. J., Jr., Luo, C, and Martinez-Maldonado, M. (1993) Internal cRNA standards for quantitative northern analysis. Biotechniques 14(6), 935–942.

    PubMed  CAS  Google Scholar 

  8. Davis, M. J., Bailey, C. S., and Smith, C. K., II (1997) Use of internal controls to increase quantitative capabilities of the ribonuclease protection assay. Biotechniques 23(2), 280–285.

    PubMed  CAS  Google Scholar 

  9. DeLeeuw, W., Siaboom, P., and Vijg, J. (1989) Quantitative comparison of mRNA levels in mammalian tissues: 28S ribosomal RNA level as an accurate internal control. Nucleic Acids Res. 17, 10,137–10,138.

    Article  PubMed  Google Scholar 

  10. Mansur, N., Meyer-Siegler, K., Wurzer, J., and Sirover, M. (1993) Cell cycle regulation of the glyceraldhyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in normal human cells. Nucleic Acids Res. 4, 993–998.

    Article  Google Scholar 

  11. Spanakis, E. (1993) Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls. Nucleic Acids Res. 16, 3809–3819.

    Article  Google Scholar 

  12. Bhatia, P., Taylor, W., Greenberg, A., and Wright, J. (1994) Comparison of glyceralde-hyde phosphate dehydrogenase and 28S ribosomal RNA gene expression as RNA loading controls for northern blot analysis of cell lines of varying malignant potential. Analyt. Biochem. 216, 223–226.

    Article  PubMed  CAS  Google Scholar 

  13. Vogt, T., Stolz, W., Welsh, J., Jung, B., Kerbel, R. S., Kobayashi, H., Landthaler, M., and McClelland, M. (1998) Over expression of Lerk-5/Eplg5 messenger RNA: a novel marker for increased tumorigenicity and metastatic potential in human malignant melanomas. Clin. Cancer Res. 4, 791–797.

    PubMed  CAS  Google Scholar 

  14. Borson, N. D., Strausbauch, M. A., Wettstein, P. J., Oda, R. P., Johnston, S. L., and Landers J. P. (1998) Direct quantitation of RNA transcripts by competitive single-tube RT-PCR and capillary electrophoresis. Biotechniques 25(1), 130–137.

    PubMed  CAS  Google Scholar 

  15. Liu, Z. F. and Burt, D. R. (1998) A synthetic standard for competitive RT-PCR quantitation of 13 GABA receptor type A subunit mRNAs in rat and mice. J. Neurosci. Meth. 85, 89–98.

    Article  CAS  Google Scholar 

  16. El-Osta, A., Kantharidis, P., and Salcberg, J. (1999) Absolute quantitation of MDR1 transcripts using heterologous DNA standards—validation of the competitive RT-PCR (CRT-PCR) approach. Biotechniques 26, 1114–1116.

    PubMed  CAS  Google Scholar 

  17. Klein, S. A., Ottmann, O. G., Ballas, K., Dobmeyer, T. S., Pape, M., Weidmann, E., Hoelzer, D., and Kalina, U. (1999) Quantification of human interleukin 18 mRNA expression by competitive reverse transcriptase polymerase chain reaction. Cytokine 11, 451–458.

    Article  PubMed  CAS  Google Scholar 

  18. Riedy, M. C., Timm, E. A., Jr., and Stewart, C. C. (1995) Quantitative RT-PCR for measuring gene expression. BioTechniques 18, 70–76.

    PubMed  CAS  Google Scholar 

  19. Ausubel, F. M. Brent, R., Kingston, R. F., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds. (1987) Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley-Interscience, New York, NY.

    Google Scholar 

  20. Rapley, R. and Manning, D. L., eds. (1998) Methods in Molecular Biology, vol. 86: RNA Isolation and Characterization Protocols, Humana Press, Totowa, NJ.

    Google Scholar 

  21. Maniatis, T., Fritsch, E. F., and Sambrook, J., eds. (1989) Molecular Cloning. A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  22. Veres, G., Gibbs, R. A., Scherer, S. E., and Caskey, C. T. (1987) The molecular basis of the sparse fur mouse mutation. Science 237, 415–417.

    Article  PubMed  CAS  Google Scholar 

  23. Noonan, K. E. and Roninson, I. B. (1988) mRNA phenotyping by enzymatic amplification of randomly primed cDNA. Nucleic Acids Res. 16, 10,366.

    Article  PubMed  CAS  Google Scholar 

  24. Hawkins, J. D. (1988) A survey of intron and exon lengths. Nucleic Acid Res. 16, 9893–9908.

    Article  PubMed  CAS  Google Scholar 

  25. Huang, Z., Fasco, M. J., and Kaminsky, L. S. (1996) Optimization of DNase I removal of contaminating DNA from RNA for use in quantitative RNA-PCR. BioTechniques 20(6), 1012–1020.

    PubMed  CAS  Google Scholar 

  26. Chomzynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 162, 156–159.

    Article  Google Scholar 

  27. Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Wertheim-Van Dillen, P. M. E., and Van Der Noordaa, J. (1990) Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 283, 495–503.

    Google Scholar 

  28. Marko, M., Chipperfield, R., and Birnboim, H. C. (1982) A procedure for the large scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder. Analyt. Biochem. 121, 382–387.

    Article  PubMed  CAS  Google Scholar 

  29. Glisin, V., Czkvenjakov, R., and Byus, C. (1973) Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13, 2633.

    Article  Google Scholar 

  30. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 24, 5294–5299.

    Article  Google Scholar 

  31. Thompson, J. and Gilllespie, D. (1987) Molecular hybridization with RNA probes in concentrated solution of guanidine thiocynate. Anal. Biochem. 163, 281–291.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Prediger, E.A. (2001). Quantitating mRNAs with Relative and Competitive RT-PCR. In: Schein, C.H. (eds) Nuclease Methods and Protocols. Methods in Molecular Biology™, vol 160. Humana Press. https://doi.org/10.1385/1-59259-233-3:049

Download citation

  • DOI: https://doi.org/10.1385/1-59259-233-3:049

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-679-6

  • Online ISBN: 978-1-59259-233-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics