Assay for Antitumor and Lectin Activity in RNase Homologs

  • Kazuo Nitta
Part of the Methods in Molecular Biology™ book series (MIMB, volume 160)

Abstract

Lectins, proteins that specifically bind carbohydrates, are widely distributed in animal and plant species. Functions of animal lectins include uptake of serum asialo-glycoproteins into liver, self-defense mechanisms, and modulation of cell-cell interactions during differentiation (1).

Keywords

Cellulose Carbohydrate EDTA Leukemia Heparin 

References

  1. 1.
    Barondes, S. H. (1981) Lectins: their multiple endogenous cellular functions. Annu. Rev. Biochem. 50, 207–231.PubMedCrossRefGoogle Scholar
  2. 2.
    Kawauchi, H., Sakakibara, F., and Watanabe, K. (1975) Agglutinins of frog eggs: a new class of proteins causing preferential agglutination of tumor cells. Experientia 31, 364,365.CrossRefGoogle Scholar
  3. 3.
    Nitta, K., Takayanagi, G., Kawauchi, H., and Hakomori, S. (1987) Isolation and characterization of Rana catesbeiana lectin and demonstration of the lectin-binding glycoprotein of rodent and human tumor cell membranes. Cancer Res. 47, 4877–4883.PubMedGoogle Scholar
  4. 4.
    Sakakibara, F., Kawauchi, H., Takayanagi, G., and Ise, H. (1979) Egg lectin of Rana japonica and its receptor glycoprotein of Ehrlich tumor cells. Cancer Res. 39, 1347–1352.PubMedGoogle Scholar
  5. 5.
    Ozeki, Y., Matsui, T., Nitta, K., Kawauchi, H., Takayanagi, Y., and Titani, K. (1991) Purification and characterization of β-galactoside binding lectin from frog (Rana catesbeiana) eggs. Biochem. Biophys. Res. Commun. 178, 407–413.PubMedCrossRefGoogle Scholar
  6. 6.
    Ahmed, H., Pohl, J., Fink, N. E., Strobel, F., and Vasta, G. R. (1996) The primary structure and carbohydrate specificity of a β-galactosyl-binding lectin from toad (Bufo arenarum Hensel) ovary reveal closer similarities to the mammalian galectin-1 than to the galectin from the clawed frog Xenopus laevis. J. Biol. Chem. 271, 33,083–33,094.PubMedCrossRefGoogle Scholar
  7. 7.
    Nitta, K., Ozaki, K., Ishikawa, M., Furusawa, S., Hosono, M., Kawauchi, H., Sasaki, K., Takayanagi, Y., Tsuiki, S., and Hakomori, S. (1994) Inhibition of cell proliferation by Rana catesbeiana and R. japonica lectins belonging to the ribonuclease superfamily. Cancer Res. 54, 920–927.PubMedGoogle Scholar
  8. 8.
    Nitta, K., Ozaki, K., Tsukamoto, Y., Furusawa, S., Ohkubo, Y., Takimoto, H., Murata, R., Hosono, M., Hikichi, N., Sasaki, K, Kawauchi, H., Takayanagi, Y., Tsuiki, S., and Hakomori, S. (1994) Characterization of a Rana catesbeiana lectin-resistant mutant of leukemia P388 cells. Cancer Res. 54, 928–934.PubMedGoogle Scholar
  9. 9.
    Titani, K., Takio, K, Kuwada, M., Nitta, K, Sakakibara, F., Kawauchi, H., Takayanagi, G., and Hakomori, S. (1987) Amino acid sequence of sialic acid binding lectin from frog (Rana catesbeiana) eggs. Biochemistry 26, 2189–2194.PubMedCrossRefGoogle Scholar
  10. 10.
    Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K, Kawauchi, H., Takayanagi, Y., and Titani, K. (1990) Amino acid sequence of a lectin from Japanese frog (Rana japonica) eggs. J. Biochem. 108, 139–143.PubMedGoogle Scholar
  11. 11.
    Nitta, K., Oyama, F., Oyama, R., Sekiguchi, K., Kawauchi, H., Takayanagi, Y., Hakomori, S., and Titani, K. (1993) Ribonuclease activity of sialic acid-binding lectin from Rana catesbeiana eggs. Glycobiology 3, 37–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Okabe, Y., Katayama, N., Iwama, M, Watanabe, H., Ohgi, K., Irie, M., Nitta, K., Kawauchi, H., Takayanagi, Y., Oyama, F., Titani, K., Abe, Y., Okazaki, T., Inokuchi, N., and Koyama, T. (1991) Comparative base specificity, stability, and lectin activity of two lectins from eggs of Rana catesbeiana and R. japonica and liver ribonuclease from R. catesbeiana. J. Biochem. 109, 786–790.PubMedGoogle Scholar
  13. 13.
    Nitta, K., Ozaki, K., Tsukamoto, Y., Hosono, M., Ogawa-Konno, Y., Kawauchi, H., Takayanagi, Y., Tsuiki, S., and Hakomori, S. (1996) Catalytic lectin (leczyme) from bullfrog (Rana catesbeiana) eggs: mechanism of tumoricidal activity. Int. J. Oncol. 9,19–23.Google Scholar
  14. 14.
    Nitta, R., Katayama, N., Okabe, Y., Iwama, M., Watanabe, H., Abe, Y., Okazaki, T., Ohgi, K., and Irie, M. (1989) Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver. J. Biochem. 106, 729–735.PubMedGoogle Scholar
  15. 15.
    Ardelt, W., Mikulski, S. M., and Shogen, K. (1991) Amino acid sequence of an antitumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J. Biol. Chem. 266, 245–251.PubMedGoogle Scholar
  16. 16.
    Strydom, D. J., Fett, J. W., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., and Vallee, B. L. (1985) Amino acid sequence of human tumor derived angiogenin. Biochemistry 24, 5486–5494.PubMedCrossRefGoogle Scholar
  17. 17.
    Beintema, J. J., Wietzes, P., Weickmann, J. L., and Glitz, D. G. (1984) The amino acid sequence of human pancreatic ribonuclease. Anal. Biochem. 136, 48–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Blackburn, P. and Moore, S. (1982) Pancreatic ribonuclease, in The Enzymes, 3rd ed., Vol. 15 (Boyer, P. D., ed.), Academic, New York, pp. 317–433.Google Scholar
  19. 19.
    Boix, E., Wu Y., Vasandani, V. M., Saxena, S. K., Ardelt, W., Ladner, J., and Youle, R. J. (1996) Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. J. Mol. Biol. 257, 992–1007.PubMedCrossRefGoogle Scholar
  20. 20.
    Youle, R. J. and D’Alessio, G. (1997) Antitumor RNases, in Ribonucleases: Structures and Functions (D’Alessio, G. and Riordan, J. F., eds.), Academic Press, New York, pp. 491–514.Google Scholar
  21. 21.
    Lopez-Otin, C, Barber, D., Fernandez-Luna, J. L., Soriano, F., and Mendez, E. (1984) The primary structure of the cytotoxin restrictocin. Eur. J. Biochem. 143, 621–634.PubMedCrossRefGoogle Scholar
  22. 22.
    Wool, I. G. (1997) Structure and mechanism of action of cytotoxic ribonuclease α-sarcin, in Ribonucleases: Structures and Functions (D’Alessio, G. and Riordan, J. F., eds.), Academic Press, New York, pp. 131–162.Google Scholar
  23. 23.
    Rathore, D. and Batra, J. K. (1996) Generation of active immunotoxins containing recombinant restrictocin. Biochem. Biophys. Res. Commun. 222, 58–63.CrossRefGoogle Scholar
  24. 24.
    Adachi, J. and Hasegawa, M. (1992) Program for molecular phylogenetics I. PROTML: maximum likelihood inference of protein phylongeny. Institute of Statistical Mathematics, Tokyo. Comput. Sci. Monographs 27, 1–77.Google Scholar
  25. 25.
    Irie, M. (1997) Structures and functions of ribonuclease. Yakugaku Zasshi (in Japanese) 117, 561–582.Google Scholar
  26. 26.
    Rosenberg, H. F., Ackerman, S. J., and Tenen, D. G. (1989) Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J. Exp. Med. 170, 163–176.PubMedCrossRefGoogle Scholar
  27. 27.
    Barker, R. L., Loegering, D. A., Ten, R. M., Hamann, K. J., Pease, L. R., and Gleich, G. J. (1989) Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J. Immunol. 143, 952–955.PubMedGoogle Scholar
  28. 28.
    Reddi, K. K. (1975) Nature and possible origin of human serum ribonuclease. Biochem. Biophys. Res. Commun. 67, 110–118.PubMedCrossRefGoogle Scholar
  29. 29.
    Kumagai, H., Igarashi, K., Takayama, T., Watanabe, K., Sugimoto, K., and Hirose, S. (1980) A microsomal endoribonuclease from rat liver. Biochim. Biophys. Acta 608, 324–331.PubMedGoogle Scholar
  30. 30.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) in Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Kazuo Nitta
    • 1
  1. 1.Cancer Research InstituteTohoku Pharmaceutical UniversitySendaiJapan

Personalised recommendations