Microtiter-Plate Assay and Related Assays for Nonspecific Endonucleases

  • Gregor Meiss
  • Oleg Gimadutdinow
  • Peter Friedhoff
  • Alfred M. Pingoud
Part of the Methods in Molecular Biology™ book series (MIMB, volume 160)


Nucleases catalyze the cleavage of phosphodiester bonds in nucleic acids. They range in size from divalent cations, such as Pb2+, which specifically cleaves tRNAPhe from yeast (1), and Mg2+, which specifically acts on squid tRNALys (2) to divalent cations complexed to chelating agents, for example Fe2+-bleomycin (3) and Cu2+-phenanthroline (4) or imidazole (5), to complex nucleic acids and proteins, such as ribozymes (6,7) or the ribonucleoprotein RNaseP (8,9). Protein nucleases are involved in a variety of important cellular functions, such as DNA restriction, DNA repair and recombination, proofreading of DNA replication, DNA cleavage during programmed cell death and RNA processing, maturation and editing (10,11). Nucleases may be extremely specific; for example, homing endonucleases, or nonspecific. Examples of the latter include nucleases found in the gastrointestinal tract of higher vertebrates and those secreted into the medium by various microorganisms.


Nuclease Activity Phosphodiester Bond Homing Endonuclease Ethidium Bromide Solution Nucleolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brown, R. S., Dewan, J. C., and Klug, A. (1985) Crystallographic and biochemical investigation of the lead (II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry 24, 4785–4801.PubMedCrossRefGoogle Scholar
  2. 2.
    Matsuo, M., Yokogawa, T., Nishikawa, K., and Watanabe, K. (1995) Highly specific and efficient cleavage of squid tRNALys catalyzed by magnesium ions. J. Biol. Chem. 270, 10,097–10,104.PubMedCrossRefGoogle Scholar
  3. 3.
    Umezawa, H., Takita, T., Sugiura, Y., Otsuka, M., Kobayashi, S., and Ohno, M. (1984) DNA-bleomycin interaction: nucleotide sequence specific binding and cleavage of DNA by bleomycin. Tetrahedron Lett. 40, 501–509.Google Scholar
  4. 4.
    Hertzberg, R. P. and Dervan, P. B. (1982) Cleavage of double helical DNA by (methidiumpropyl-EDTA) iron (II), J. Am. Chem. Soc. 104, 313–315.CrossRefGoogle Scholar
  5. 5.
    Vlassov, V. V., Zuber, G., Felden, B., Behr, J. P., and Giege, R. (1995) Cleavage of tRNA with imidazole and imidazole constructs: a new approach for probing RNA structure. Nucleic Acids Res. 23, 3161–3167.PubMedCrossRefGoogle Scholar
  6. 6.
    James, H. A. and Turner, P. C. (1997) Ribozymes. Methods Mol. Biol. 74, 1–9.PubMedGoogle Scholar
  7. 7.
    Tanner, N. K. (1999) Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol. Rev. 23, 257–275.PubMedCrossRefGoogle Scholar
  8. 8.
    Frank, D. N. and Pace, N. R. (1998) Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu. Rev. Biochem. 67, 153–180.PubMedCrossRefGoogle Scholar
  9. 9.
    Schoen, A. (1999) Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme. FEMS Microbiol. Rev. 23, 391–406.Google Scholar
  10. 10.
    Linn, S. M., Lloyd, R. S., and Roberts, R. J. (eds.) Nucleases, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  11. 11.
    D’Alessio, G. and Riordan, J. F., eds. (1997) Ribonucleases: Structures and Functions. Academic, San Diego, CA.Google Scholar
  12. 12.
    Drew, H. R. and Travers, A. A. (1984) DNA structural variations in the E. coli tyrT promoter. Cell 37, 491–502.PubMedCrossRefGoogle Scholar
  13. 13.
    Meiss, G., Friedhoff, P., Hahn, M., Gimadutdinow, O., and Pingoud, A. (1995) Sequence preferences in cleavage of dsDNA and ssDNA by the extracellular Serratia marcescens endonuclease. Biochemistry 34, 11,979–11,988.PubMedCrossRefGoogle Scholar
  14. 14.
    Kunitz, M. (1950) Crystalline deoxyribonuclease I. Isolation and general properties. Spectrophotometric method for the measurement of deoxyribonuclease activity. J. Gen. Physiol. 33, 349–362.PubMedCrossRefGoogle Scholar
  15. 15.
    Laskowski, S. M. (1959) Enzymes hydrolyzing DNA. Ann. NY Acad. Sci. 81, 776–781.PubMedCrossRefGoogle Scholar
  16. 16.
    Moravek, L., Anfinsen, C. B., Cone, J. L., and Taniuchi, H. (1969) The large scale preparation of an extracellular nuclease of Staphylococcus aureus. J. Biol. Chem. 244, 497–499.PubMedGoogle Scholar
  17. 17.
    Hale, S. P., Poole, L. B., and Gerlt, J. A. (1993) Mechanism of the reaction catalyzed by staphylococcal nuclease: identification of the rate-determining step. Biochemistry 32, 7479–7487.PubMedCrossRefGoogle Scholar
  18. 18.
    Nestle, M. and Roberts, W. K. (1969) An extracellular nuclease from Serratia marcescens I. Purification and some properties of the enzyme. J. Biol. Chem. 244, 5213–5218.PubMedGoogle Scholar
  19. 19.
    Nestle, M. and Roberts, W. K. (1969) An extracellular nuclease from Serratia marcescens II. Specificity of the enzyme. J. Biol. Chem. 244, 5219–5225.PubMedGoogle Scholar
  20. 20.
    Friedhoff, P., Gimadutdinow, O., and Pingoud, A. (1994) Identification of catalytically relevant amino acids of the extracellular Serratia marcescens endonuclease by alignment-guided mutagenesis. Nucleic Acids Res. 22, 3280–3287.PubMedCrossRefGoogle Scholar
  21. 21.
    Friedhoff, P., Matzen, S. E., Meiss, G., and Pingoud, A. (1996) A quantitative microtiter plate nuclease assay based on ethidium/DNA fluorescence. Anal. Biochem. 2240, 283–288.CrossRefGoogle Scholar
  22. 22.
    Friedhoff, P., Meiss, G., Kolmes, B., Pieper, U., Gimadutdinow, O., Urbanke, C., and Pingoud, A. (1996) Kinetic analysis of the cleavage of natural and synthetic substrates by the Serratia nuclease. Eur. J. Biochem. 241, 572–580.PubMedCrossRefGoogle Scholar
  23. 23.
    Friedhoff, P., Franke, I., Krause, K. L., and Pingoud, A. (1999) Cleavage experiments with deoxythymidine-3′-5′-bis-(p-nitrophenylphosphate) suggest that the homing endonuclease I-PpoI follows the same mechanism of phosphodiester bond hydrolysis as the non-specific Serratia nuclease. FEBS Lett. 443, 209–214.PubMedCrossRefGoogle Scholar
  24. 24.
    Friedhoff, P., Franke, I., Meiss, G., Wende, W., Krause, K., and Pingoud, A. (1999) A similar active site for non-specific and specific endonucleases. Nat. Struct. Biol. 6, 11–113.CrossRefGoogle Scholar
  25. 25.
    Miller, M. D., Tanner, J., Alpaugh, M., Benedik, M. J., and Krause, K. L. (1994) 2.1 Å structure of Serratia endonuclease suggests a mechanism for binding to double-stranded DNA. Nature Struct. Biol. 1, 461–468.PubMedCrossRefGoogle Scholar
  26. 26.
    Miller, M. D. and Krause, K. L. (1996) Identification of the Serratia endonuclease dimer: Structural basis and implications for catalysis. Protein Sci. 5, 24–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Benedik, M. J. and Strych, U. (1998) Serratia marcescens and its extracellular nuclease. FEMS Microbiol. Lett. 165, 1–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Saenger, W. (1991) Structure and catalytic function of nucleases. Curr. Opin. Struc. Biol. 1, 130–138.CrossRefGoogle Scholar
  29. 29.
    Suck, D. (1992) Nuclease structure and catalytic function. Curr. Opin. Struc. Biol. 2, 84–92.CrossRefGoogle Scholar
  30. 30.
    Gerlt, J. A. (1993) Mechanistic principles of enzyme-catalyzed cleavage of phosphodiester bonds, in Nucleases (Linn, S. M., Lloyd, R. S., and Roberts, R. J., eds.), 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 1–34.Google Scholar
  31. 31.
    Eun, H.-M. (1996) Enzymology Primer for Recombinant DNA Technology. Academic Press, San Diego, CA.Google Scholar
  32. 32.
    Suck, D. and Oefner, C. (1986) Structure of DNase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA. Nature 321, 621–625.CrossRefGoogle Scholar
  33. 33.
    Worrall, A. F. and Connolly, B. A. (1990) The chemical synthesis of a gene coding for bovine pancreatic DNase I and its cloning and expression in Escherichia coli. J. Biol. Chem. 265, 21,889–21,895.PubMedGoogle Scholar
  34. 34.
    Doherty, A. J., Worrall, A. F., and Connolly, B. A. (1991) Mutagenesis of the DNA binding residues in bovine pancreatic DNase I: an investigation into the mechanism of sequence discrimination by a sequence selective nuclease. Nucleic Acids Res. 22, 6129–6132.CrossRefGoogle Scholar
  35. 35.
    Doherty, A. J., Connolly, B. A., and Worrall, A. F. (1993) Overproduction of the toxic protein, bovine pancreatic DNase I, in Escherichia coli using a tightly controlled T7-promoter-based vector. Gene 136, 337–340.PubMedCrossRefGoogle Scholar
  36. 36.
    Doherty, A. J., Worrall, A. F., and Connolly, B. A. (1995) The roles of arginine 41 and tyrosine 76 in the coupling of DNA recognition to phosphodiester bond cleavage by DNase I: a study using site directed mutagenesis. J. Mol. Biol 251, 366–377.PubMedCrossRefGoogle Scholar
  37. 37.
    Warren, M. A., Steven, J. E., and Connolly, A. (1997) Effects of non-conservative changes to tyrosine 76, a key DNA binding residue of DNase I, on phosphodieseter bond cleavage and DNA hydrolysis selectivity. Protein Eng. 10, 279–283.PubMedCrossRefGoogle Scholar
  38. 38.
    Hogan, M. E., Roberson, M. W., and Austin, R. H. (1989) DNA flexibility variation may dominate DNase I cleavage. Proc. Natl. Acad. Sci. USA 86, 9273–9277.PubMedCrossRefGoogle Scholar
  39. 39.
    Brukner, I., Jurokovski, V. and Savic, A. (1990) Sequence dependent structural variations of DNA revealed by DNase I, Nucleic Acids Res. 18, 891–894.PubMedCrossRefGoogle Scholar
  40. 40.
    Brukner, I., Sanchez, R., Suck, D., and Pongor, S. (1995) Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. EMBO J. 14, 1812–1818.PubMedGoogle Scholar
  41. 41.
    Travers, A. (1993) DNA-Protein Interactions, Chapman and Hall, London.Google Scholar
  42. 42.
    Laskowski, S. M. (1971) Deoxyribonuclease I, in The Enzymes, vol. IV: Hydrolysis, 3rd ed. (Boyer, P. D., ed.), Academic Press, New York.Google Scholar
  43. 43.
    Serpersu, E. H., Shortle, D., and Mildvan, A. S. (1987) Kinetic and magnetic resonance studies of active-site mutants of staphylococcal nuclease: factors contributing to catalysis. Biochemistry 26, 1289–300.PubMedCrossRefGoogle Scholar
  44. 44.
    Miller, M. D., Cai, J., and Krause, K. L. (1999) The active site of Serratia endonuclease contains a conserved magnesium-water cluster. J. Mol. Biol. 288, 975–987.PubMedCrossRefGoogle Scholar
  45. 45.
    Meiss, G., Gast, F. U., and Pingoud, A. (1999) The DNA/RNA non-specific Serratia nuclease prefers double stranded A-form nucleic acids as substrates, J. Mol. Biol. 288, 377–390.PubMedCrossRefGoogle Scholar
  46. 46.
    Franke, I., Meiss, G., and Pingoud, A. (1999) On the advantage of being a dimer: a case study using the dimeric Serratia nuclease and the monomeric nuclease from Anabaena sp. strain PCC 7120. J. Biol. Chem. 274, 825–832.PubMedCrossRefGoogle Scholar
  47. 47.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  48. 48.
    Rosenthal, A. L. and Lacks, S. A. (1977) Nuclease detection in SDS-polyacrylamide gel electrophoresis. Anal. Biochem. 80, 76–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Muro-Pastor, A. M., Flores, E., Herrero, A., and Wolk, C. P. (1992) Identification, genetic analysis and characterization of a sugar-non-specific nuclease from the cyanobacterium Anabaena sp. strain PCC 7120. Mol. Microbiol. 6, 3021–3030.PubMedCrossRefGoogle Scholar
  50. 50.
    Weber, D. J., Meeker, A. K., and Mildvan, A. S. (1991) Interactions of the acid and base catalysts on Staphylococcal nuclease as studied in a double mutant. Biochemistry 30, 6103–6114.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Gregor Meiss
    • 1
  • Oleg Gimadutdinow
    • 2
  • Peter Friedhoff
    • 1
  • Alfred M. Pingoud
    • 1
  1. 1.Fachbereich Biologie, Institut für BiochemieJustus-Liebig-UniversitätGiessenGermany
  2. 2.Department of GeneticsUniversity of KazanRussian Federation

Personalised recommendations