Assessment of White Adipose Tissue Metabolism by Measurement of Arteriovenous Differences

  • Keith N. Frayn
  • Simon W. Coppack
Part of the Methods in Molecular Biology™ book series (MIMB, volume 155)


Adipose tissue (AT) is more than a collection of adipocytes. It is a highly organized tissue in which different cell types interact, and in which a complex mix of hormones and substrates arriving in the plasma, together with neural input and the rate of blood flow (BF), all regulate metabolic activity. These multiple, interacting influences cannot be reproduced in vitro, and, hence, if we wish to understand the integration of AT metabolism in the whole body, it is essential to perform studies of AT metabolism in vivo. There are a number of ways in which this can be done (1). One of the most specific and informative, in a quantitative sense, is the measurement of arteriovenous (A-V) differences across the tissue.


Adipose Tissue Fractional Extraction Adipose Depot Arterial Concentration Glycerol Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Frayn, K. N., Fielding, B. A., and Summers, L. K. M. (1997) Investigation of human adipose tissue metabolism in vivo. J. Endocrinol. 155, 187–189.PubMedCrossRefGoogle Scholar
  2. 2.
    Wolfe, R. R. (1984) Tracers in Metabolic Research: Radioisotope and Stable Isotope/Mass Spectrometry Methods. Alan R. Liss, New York.Google Scholar
  3. 3.
    Frayn, K. N., Coppack, S. W., Humphreys, S. M., and Whyte, P. L. (1989) Metabolic characteristics of human adipose tissue in vivo. Clin. Sci. 76, 509–516.PubMedGoogle Scholar
  4. 4.
    Bülow, J. (1982) Subcutaneous adipose tissue blood flow and triacylglycerol-mobilization during prolonged exercise in dogs. Pflügers Archiv: Eur. J. Physiol. 392, 230–234.CrossRefGoogle Scholar
  5. 5.
    Holloway, B. R., Stribling, D., Freeman, S., and Jamieson, L. (1985) Thermogenic role of adipose tissue in the dog. Int. J. Obesity 9, 423–432.Google Scholar
  6. 6.
    Gooden, J. M., Campbell, S. L., and van der Walt, J. G. (1986) Measurement of blood flow and lipolysis in the hindquarter tissues of the fat-tailed sheep in vivo. Quart. J. Exp. Physiol. 71, 537–547.Google Scholar
  7. 7.
    Kowalski, T. J., Wu, G., and Watford, M. (1997) Rat adipose tissue amino acid metabolism in vivo as assessed by microdialysis and arteriovenous techniques. Amer J. Physiol. 273, E613–E622.PubMedGoogle Scholar
  8. 8.
    Frayn, K. N. (1992) Studies of human adipose tissue in vivo, in Energy metabolism: tissue determinants and cellular corollaries (Kinney J. M. and Tucker, H. N., eds.), Raven Press, Philadelphia, pp. 267–295.Google Scholar
  9. 9.
    Karpe, F., Humphreys, S. M., Samra, J. S., Summers, L. K. M., and Frayn, K. N. (1997) Clearance of lipoprotein remnant particles in adipose tissue and muscle in humans. J. Lipid Res. 38, 2335–2343.PubMedGoogle Scholar
  10. 10.
    Fielding, B. A., Humphreys, S. M., Shadid, S., and Frayn, K. N. (1995) Arterio-venous differences across human adipose tissue for mono-, di-and tri-acylglycerols before and after a high-fat meal. Endocrinol. Metab. 2, 13–17.Google Scholar
  11. 11.
    Coppack, S. W., Frayn, K. N., Humphreys, S. M., Dhar, H., and Hockaday, T. D. R. (1989) Effects of insulin on human adipose tissue metabolism in vivo. Clin. Sci. 77, 663–670.PubMedGoogle Scholar
  12. 12.
    Frayn, K. N., Shadid, S., Hamlani, R., Humphreys, S. M., Clark, M. L., Fielding, B. A., Boland, O., and Coppack, S. W. (1994) Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am. J. Physiol. 266, E308–E317.PubMedGoogle Scholar
  13. 13.
    Frayn, K. N., Lund, P., and Walker, M. (1993) Interpretation of oxygen and carbon dioxide exchange across tissue beds in vivo. Clin. Sci. 85, 373–384.PubMedGoogle Scholar
  14. 14.
    Coppack, S. W., Evans, R. D., Fisher, R. M., Frayn, K. N., Gibbons, G. F., Humphreys, S. M., et al. (1992) Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism 41, 264–272.PubMedCrossRefGoogle Scholar
  15. 15.
    Ong, J. M., and Kern, P. A. (1989) Effect of feeding and obesity on lipoprotein lipase activity, immunoreactive protein, and messenger RNA levels in human adipose tissue. J. Clin. Invest. 84, 305–311.PubMedCrossRefGoogle Scholar
  16. 16.
    Nilsson-Ehle, P., Egelrud, T., Belfrage, P., Olivecrona, T., and Borgström, B. (1973) Positional specificity of purified milk lipoprotein lipase. J. Biol. Chem. 248, 6734–6737.PubMedGoogle Scholar
  17. 17.
    Samra, J. S., Frayn, K. N., Giddings, J. A., Clark, M. L., and Macdonald, I. A. (1995) Modification and validation of a commercially available portable detector for measurement of adipose tissue blood flow. Clin. Physiol. 15, 241–248.PubMedCrossRefGoogle Scholar
  18. 18.
    Groome, J., Vohra, R., Cuschieri, R. J., and Gilmour, D. G. (1989) Vascular injury after arterial catheterization. Postgrad. Med. J. 65, 86–88.PubMedCrossRefGoogle Scholar
  19. 19.
    Aoki, T. T., Brennan, M. F., Müller, W. A., Moore, F. D., and Cahill, G. F. (1972) Effect of insulin on muscle glutamate uptake. Whole blood versus plasma glutamate analysis. J. Clin. Invest. 51, 2889–2894.PubMedCrossRefGoogle Scholar
  20. 20.
    Coppack, S. W., Frayn, K. N., Humphreys, S. M., Whyte, P. L., and Hockaday, T. D. R. (1990) Arteriovenous differences across human adipose and forearm tissues after overnight fast. Metabolism 39, 384–390.PubMedCrossRefGoogle Scholar
  21. 21.
    Dillon, R. (1965) Importance of hematocrit in interpretation of blood sugar. Diabetes 14, 672–678.PubMedGoogle Scholar
  22. 22.
    Zierler, K. L. (1961) Theory of the use of arteriovenous concentration differences for measuring metabolism in steady and non-steady states. J. Clin. Invest. 40, 2111–2125.PubMedCrossRefGoogle Scholar
  23. 23.
    Elia, M., Folmer, P., Schlatmann, A., Goren, A., and Austin, S. (1988) Carbohydrate, fat, and protein metabolism in muscle and in the whole body after mixed meal ingestion. Metabolism 37, 542–551.PubMedCrossRefGoogle Scholar
  24. 24.
    Frayn, K. N. and Macdonald, I. A. (1992) Methodological considerations in arterialization of venous blood. Clin. Chem. 38, 316–317.PubMedGoogle Scholar
  25. 25.
    Forster, H. V., Dempsey, J. A., Thomson, J., Vidruk, E., and DoPico, G. A. (1972) Estimation of arterial PO2, PCO2, pH, and lactate from arterialized venous blood. J. Appl. Physiol. 32, 134–137.PubMedGoogle Scholar
  26. 26.
    McLoughlin, P., Popham, P., Linton, R. A., Bruce, R. C., and Band, D. M. (1992) Use of arterialized venous blood sampling during incremental exercise tests. J. Appl. Physiol. 73, 937–940.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Keith N. Frayn
    • 1
  • Simon W. Coppack
    • 2
  1. 1.The Oxford Lipid Metabolism GroupUniversity of OxfordOxfordUK
  2. 2.Academic Medical UnitRoyal London HospitalLondonUK

Personalised recommendations