Assays of Glucose Entry, Glucose Transporter Amount, and Translocation

  • Jean-François Tanti
  • Mireille Cormont
  • Thierry Grémeaux
  • Yannick Le Marchand-Brustel
Part of the Methods in Molecular Biology™ book series (MIMB, volume 155)


Glucose enters the cell by a carrier-mediated, facilitated diffusion mechanism, which, in most tissues, exhibits no energy or counter-ion requirements. In adipose tissues and skeletal muscle, glucose entry is acutely regulated by insulin and other hormones (1,2). Indeed, in those tissues, glucose transporter 4 (GLUT4) is the chief isoform which is, in basal conditions, retained in a specific intracellular storage compartment (3). The GLUT4-containing vesicles are translocated to the plasma membrane in response to insulin, thus allowing for the massive entry of glucose into the cells (1,2). Adipocytes also contain a small proportion of the ubiquituously expressed glucose transporter, GLUT1, which is at a similar level at the plasma membranes and inside the cell (3). Because of this basal distribution, insulin effect on GLUT1 translocation is minor.


Incubation Buffer Insulin Stimulation GLUT1 Translocation Glucose Entry Nonspecific Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rea, S. and James, D. E. (1997) Moving GLUT4. The biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46, 1667–1677.PubMedCrossRefGoogle Scholar
  2. 2.
    Simpson, I. A. and Cushman, S. W. (1986) Hormonal regulation of mammalian glucose transport. Annu. Rev. Biochem. 55, 1059–1089.PubMedCrossRefGoogle Scholar
  3. 3.
    Gould, G. W. and Holman, G. D. (1993) The glucose transporter family: structure, function and tissue-specific expression. Biochem. J. 295, 329–341.PubMedGoogle Scholar
  4. 4.
    Rodbell, M. (1968) Metabolism of hormones on glucose metabolim and lipolysis. J. Biol. Chem. 239, 375–380.Google Scholar
  5. 5.
    Olefsky, J. M. (1975) Effects of dexamethasone on insulin binding, glucose transport and glucose oxidation of isolated rat adipocytes. J. Clin. Invest. 56, 1499–1508.PubMedCrossRefGoogle Scholar
  6. 6.
    Livingston, J. N. and Lockwood, D. H. (1975) Effect of glucocorticoids on the glucose transport system of isolated fat cells. J. Biol. Chem. 250, 8353–8360.PubMedGoogle Scholar
  7. 7.
    Vinten, J., Gliemann, J., and Østerlind, K. (1975) Exchange of 3-O-methylglucose in isolated fat cells. J. Biol. Chem. 251, 794–800.Google Scholar
  8. 8.
    Moody, A. J., Stan, M. A., and Stan, M. (1974) A simple free fat cell bioassay for insulin. Horm. Metabol. Res. 6, 12–16.CrossRefGoogle Scholar
  9. 9.
    Kashiwagi, A., Verso, M. A., Andrews, J., Vasquez, B., Reaven, G., and Foley, J. E. (1983) In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus. J. Clin. Invest. 72, 1246–1254.PubMedCrossRefGoogle Scholar
  10. 10.
    Quon, M. J., Butte, A. J., Zarnowski, M. J., Sesti, G., Cushman, S. W., and Taylor, S. I. (1994) Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J. Biol. Chem. 269, 27,920–27,924.PubMedGoogle Scholar
  11. 11.
    Tanti, J.-F., Grémeaux, T., Grillo, S., Calleja, V., Klippel, A., Williams, L. T., Van Obberghen, E., and Le Marchand-Brustel, Y. (1996) Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote Glut 4 translocation in adipocytes. J. Biol. Chem. 271, 25,227–25,232.PubMedCrossRefGoogle Scholar
  12. 12.
    Robinson, L. J., Pang, S., Harris, D. S., Heuser, J., and James, D. E. (1992) Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: Effects of ATP, insulin, and GTPγS and localization of GLUT4 to clathrin lattices. J. Cell Biol. 117, 1181–1196.PubMedCrossRefGoogle Scholar
  13. 13.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  14. 14.
    Cormont, M., Bortoluzzi, M.-N., Gautier, N., Mari, M., Van Obberghen, E., and Le Marchand-Brustel, Y. (1996) Potential role of Rab4 in the regulation of subcellular localization of Glut4 in adipocytes. Mol. Cell. Biol. 16, 6879–6886.PubMedGoogle Scholar
  15. 15.
    Quon, M. J., Zarnowski, M., Guerre-Millo, M., De La Luz Sierra, M., Taylor, S. I., and Cushman, S. W. (1993) Transfection of DNA into isolated rat adipose cells by electroporation. Evaluation of promoter activity in transfected adipose cells which are highly responsive to insulin after one day in culture. Biochem. Biophys. Res. Commun. 194, 338–346.PubMedCrossRefGoogle Scholar
  16. 16.
    Tanti, J.-F., Grillo, S., Grémeaux, T., Coffer, P. J., Van Obberghen, E., and Le Marchand-Brustel, Y. (1997) Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 138, 2005–2010.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith, F. S. and Titheradge, M. A. (1998) Detection of NOS isoforms by Western-Blot analysis, in Methods in Molecular Biology, Vol 100. Nitric Oxide Protocols (Tithradge, M. A., eds.), Humana, Totowa, NJ, pp. 171–180.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Jean-François Tanti
    • 1
  • Mireille Cormont
    • 1
  • Thierry Grémeaux
    • 1
  • Yannick Le Marchand-Brustel
    • 1
  1. 1.Faculté de MédecineINSERM E99-11NiceFrance

Personalised recommendations