Advertisement

Considerations in Generating Transgenic Mice

DNA, RNA, and Protein Extractions from Tissues—Rapid and Effective Blotting
  • Joanna B. Wilson
  • Mark E. Drotar
Part of the Methods in Molecular Biology™ book series (MIMB, volume 174)

Abstract

The mouse provides a powerful system to produce and study models of human disease. The ability to introduce, inactivate, or modify genes in mice has significantly advanced our understanding of molecular and cellular disease processes. New tools and novel applications of the classic techniques now permit spacial and temporal restrictions to be applied to in vivo gene expression. In this chapter, the expansive methods used to generate transgenic mice will not be presented as there are several comprehensive books on the topic, including one in this series (1,2). In addition, the legislative requirements for working with animals will not be described here; suffice it to mention that transgenic animal production is a licensed procedure within the UK. Instead, considerations relating specifically to the application of transgenic techniques to studying Epstein-Barr virus (EBV)-associated diseases will be discussed.

Keywords

Sodium Dodecyl Sulphate Plastic Wrap Protein Extraction Buffer Roller Tube Church Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hogan, B., Constantini, F., and Lacy, E. (1986) Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  2. 2.
    Murphy, D. and Carter, D. A. (1993) Transgenesis Techniques, Principles and Protocols, Methods Mol Biol. vol. 18, Humana Press.Google Scholar
  3. 3.
    Wilson, J. B. (1997) Transgenic mouse models of disease and Epstein-Barr virus. EBV Report 4, 63–72.Google Scholar
  4. 4.
    Adams, J. M., Harris, A. W., Pinkert, C. A., Corcoran, L. M., Alexander, W. S., Cory, S., et al. (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538.PubMedCrossRefGoogle Scholar
  5. 5.
    Grosschedl, R. and Baltimore, D. (1985) Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements. Cell 41, 885–897.PubMedCrossRefGoogle Scholar
  6. 6.
    Gerlinger, P., LeMeur, M., Irrmann, C., Renard, P., Wasylyk, C., and Wasylyk, B. (1986) B-lymphocyte targeting of gene expression in transgenic mice with the immunoglobulin heavy-chain enhancer. Nucleic Acids Res. 14, 6565–6577.PubMedCrossRefGoogle Scholar
  7. 7.
    Suda, Y., Aizawa, S., Hirai, S., Inoue, T., Furuta, Y., Suzuki, M., et al. (1987) Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO J. 6, 4055–4065.PubMedGoogle Scholar
  8. 8.
    Schmidt, E. V., Pattengale, P. K., Weir, L., and Leder, P. (1988) Transgenic mice bearing the human c-myc gene activated by an immunoglobulin enhancer: a pre-B-cell lymphoma model. Proc. Natl. Acad. Sci. USA 85, 6047–6051.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilson, J. B., Weinberg, W., Johnson, R., Yuspa, S., and Levine, A. J. (1990) Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell 61, 1315–1327.PubMedCrossRefGoogle Scholar
  10. 10.
    McDonnell, T. J., Nunez, G., Platt, F. M., Hockenberry, D., London, L., McKearn, J. P., and Korsmeyer, S. J. (1990) Deregulated Bcl-2-immunoglobulin transgene expands a resting but responsive immunoglobulin M and D-expressing B-cell population. Mol. Cell Biol. 10, 1901–1907.PubMedGoogle Scholar
  11. 11.
    Iwamoto, T., Pu, M., Ito, M., Takahashi, M., Isobe, K., Nagase, F., et al. (1991) Preferential development of pre-B lymphomas with drastically down-regulated N-myc in the E mu-ret transgenic mice. Eur. J. Immunol. 21, 1809–1814.PubMedCrossRefGoogle Scholar
  12. 12.
    Akagi, K., Miyazaki, J., and Yamamura, K. (1992) Strain dependency of cell-type specificity and onset of lymphoma development in Emu-myc transgenic mice. Jpn. J. Cancer Res. 83, 269–273.PubMedGoogle Scholar
  13. 13.
    Wilson, J. B. and Levine, A. J. (1992) The oncogenic potential of Epstein-Barr virus nuclear antigen 1 in transgenic mice. Curr. Topics Microbiol. Immunol. 182, 375–384.Google Scholar
  14. 14.
    Haupt, Y., Bath, M. L., Harris, A. W., and Adams, J. M. (1993) bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8, 3161–3164.PubMedGoogle Scholar
  15. 15.
    Bodrug, S. E., Warner, B. J., Bath, M. L., Lindeman, G. J., Harris, A. W., and Adams, J. M. (1994) Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J. 13, 2124–2130.PubMedGoogle Scholar
  16. 16.
    Lovec, H., Grzeschiczek, A., Kowalski, M. B., and Moroy, T. (1994) Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 13, 3487–3495.PubMedGoogle Scholar
  17. 17.
    Spanopoulou, E., Roman, C. A., Corcoran, L. M., Schlissel, M. S., Silver, D. P., Nemazee, D., et al. (1994) Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042.PubMedCrossRefGoogle Scholar
  18. 18.
    Wilson, J. B., Bell, J. L., and Levine, A. J. (1996) Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 15, 3117–3126.PubMedGoogle Scholar
  19. 19.
    Butzler, C., Zou, X., Popov, A. V., and Bruggemann, M. (1997) Rapid induction of B-cell lymphomas in mice carrying a human IgH/c-mycYAC. Oncogene 14, 1383–1388.PubMedCrossRefGoogle Scholar
  20. 20.
    Caldwell, R. G., Wilson, J. B., Anderson, S. J., and Longnecker, R. (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411.PubMedCrossRefGoogle Scholar
  21. 21.
    Ong, S. T., Hackbarth, M. L., Degenstein, L. C., Baunoch, D. A., Anastasi, J., and McKeithan, T. W. (1998) Lymphadenopathy, splenomegaly, and altered immunoglobulin production in BCL3 transgenic mice. Oncogene 16, 2333–2343.PubMedCrossRefGoogle Scholar
  22. 22.
    Wasserman, R., Zeng, X. X., and Hardy, R. R. (1998) The evolution of B precursor leukemia in the Eμ-ret mouse. Blood 92, 273–282.PubMedGoogle Scholar
  23. 23.
    Nakagawa, H., Wang, T. C., Zukerberg, L., Odze, R., Togawa, K., May, G. H., et al. (1997) The targeting of the cyclin D1 oncogene by an Epstein-Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene 14, 1185–1190.PubMedCrossRefGoogle Scholar
  24. 24.
    Allen, J. M., Forbush, K. A., and Perlmutter, R. M. (1992) Functional dissection of the lck proximal promoter. Mol. Cell Biol. 12, 2758–2768.PubMedGoogle Scholar
  25. 25.
    McGuire, E. A., Rintoul, C. E., Sclar, G. M., and Korsmeyer, S. J. (1992) Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol. Cell Biol. 12, 4186–4196.PubMedGoogle Scholar
  26. 26.
    Linette, G. P., Hess, J. L., Sentman, C. L., and Korsmeyer, S. J. (1995) Peripheral T-cell lymphoma in lckpr-bcl-2 transgenic mice. Blood 86, 1255–1260.PubMedGoogle Scholar
  27. 27.
    Condorelli, G. L., Facchiano, F., Valtieri, M., Proietti, E., Vitelli, L., Lulli, V., et al. (1996) T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res. 56, 5113–5119.PubMedGoogle Scholar
  28. 28.
    Carrasco, D., Rizzo, C. A., Dorfman, K., and Bravo, R. (1996) The v-rel oncogene promotes malignant T-cell leukemia/lymphoma in transgenic mice. EMBO J. 15, 3640–3650.PubMedGoogle Scholar
  29. 29.
    Zornig, M., Hueber, A. O., and Evan, G. (1998) p53-dependent impairment of T-cell proliferation in FADD dominant-negative transgenic mice. Curr. Biol. 8, 467–470.PubMedCrossRefGoogle Scholar
  30. 30.
    Attar, R. M., Macdonald-Bravo, H., Raventos-Suarez, C., Durham, S. K., and Bravo, R. (1998) Expression of constitutively active IκB β in T cells of transgenic mice: persistent NF-κB activity is required for T-cell immune responses. Mol. Cell Biol. 18, 477–487.PubMedGoogle Scholar
  31. 31.
    Zinkernagel, R. M., Pircher, H. P., Ohashi, P., Oehen, S., Odermatt, B., Mak, T., Arnheiter, H., Burki, K., and Hengartner, H. (1991) T and B cell tolerance and responses to viral antigens in transgenic mice: implications for the pathogenesis of autoimmune versus immunopathological disease. Immunol. Rev. 122, 133–171.PubMedCrossRefGoogle Scholar
  32. 32.
    Stewart, M., Cameron, E., Campbell, M., McFarlane, R., Toth, S., Lang, K., Onions, D., and Neil, J. C. (1993) Conditional expression and oncogenicity of c-myc linked to a CD2 gene dominant control region. Int. J. Cancer 53, 1023–1030.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanna, Z., Simard, C., Laperriere, A., and Jolicoeur, P. (1994) Specific expression of the human CD4 gene in mature CD4+ CD8-and immature CD4+ CD8+ T cells and in macrophages of transgenic mice. Mol. Cell Biol. 14, 1084–1094.PubMedGoogle Scholar
  34. 34.
    Brombacher, F., Schafer, T., Weissenstein, U., Tschopp, C., Andersen, E., Burki, K., and Baumann, G. (1994) IL-2 promoter-driven lacZ expression as a monitoring tool for IL-2 expression in primary T cells of transgenic mice. Int. Immunol. 6, 189–197.PubMedCrossRefGoogle Scholar
  35. 35.
    Grossman, W. J., Kimata, J. T., Wong, F. H., Zutter, M., Ley, T. J., and Ratner, L. (1995) Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. Proc. Natl. Acad. Sci. USA 92, 1057–1061.PubMedCrossRefGoogle Scholar
  36. 36.
    Lichtenheld, M. G., Podack, E. R., and Levy, R. B. (1995) Transgenic control of perforin gene expression. Functional evidence for two separate control regions. J. Immunol. 154, 2153–2163.PubMedGoogle Scholar
  37. 37.
    Aguila, H. L., Hershberger, R. J., and Weissman, I. L. (1995) Transgenic mice carrying the diphtheria toxin A chain gene under the control of the granzyme A promoter: expected depletion of cytotoxic cells and unexpected depletion of CD8 T cells. Proc. Natl. Acad. Sci. USA 92, 10,192–10,196.PubMedCrossRefGoogle Scholar
  38. 38.
    Salmon, P., Boyer, O., Lores, P., Jami, J., and Klatzmann, D. (1996) Characterization of an intronless CD4 minigene expressed in mature CD4 and CD8 T cells, but not expressed in immature thymocytes. J. Immunol. 156, 1873–1879.PubMedGoogle Scholar
  39. 39.
    Boyer, O., Zhao, J. C., Cohen, J. L., DePetris, D., Yagello, M., Lejeune, L., et al. (1997) Position-dependent variegation of a CD4 minigene with targeted expression to mature CD4+ T cells. J. Immunol. 159, 3383–3390.PubMedGoogle Scholar
  40. 40.
    Lee, W. H., Park, Y. M., Kim, J. I., Park, W. Y., Kim, S. H., Jang, J. J., and Seo, J. S. (1998) Expression of heat shock protein 70 blocks thymic differentiation of T cells in transgenic mice. Immunology 95, 559–565.PubMedCrossRefGoogle Scholar
  41. 41.
    Rouleau, M., Cottrez, F., Bigler, M., Antonenko, S., Carballido, J. M., Zlotnik, A., et al. (1999) IL-10 transgenic mice present a defect in T cell development reminiscent of SCID patients. J. Immunol. 163, 1420–1427.PubMedGoogle Scholar
  42. 42.
    Manjunath, N., Shankar, P., Stockton, B., Dubey, P. D., Lieberman, J., and von Andrian, U. H. (1999) A transgenic mouse model to analyze CD8(+) effector T cell differentiation in vivo. Proc. Natl. Acad. Sci. USA 96, 13,932–13,937.PubMedCrossRefGoogle Scholar
  43. 43.
    Na, S., Li, B., Grewal, I. S., Enslen, H., Davis, R. J., Hanke, J. H., and Flavell, R. A. (1999) Expression of activated CDC42 induces T cell apoptosis in thymus and peripheral lymph organs via different pathways. Oncogene 18, 7966–7974.PubMedCrossRefGoogle Scholar
  44. 44.
    Byrne, C., Tainsky, M., and Fuchs, E. (1994) Programming gene expression in developing epidermis. Development 120, 2369–2383.PubMedGoogle Scholar
  45. 45.
    Vassar, R. and Fuchs, E. (1991) Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev. 5, 714–727.PubMedCrossRefGoogle Scholar
  46. 46.
    Guo, L., Yu, Q. C., and Fuchs, E. (1993) Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J. 12, 973–986.PubMedGoogle Scholar
  47. 47.
    Missero, C., Serra, C., Stenn, K., and Dotto, G. P. (1993) Skin-specific expression of a truncated E1a oncoprotein binding to p105-Rb leads to abnormal hair follicle maturation without increased epidermal proliferation. J. Cell Biol. 121, 1109–1120.PubMedCrossRefGoogle Scholar
  48. 48.
    Williams, I. R. and Kupper, T. S. (1994) Epidermal expression of intercellular adhesion molecule 1 is not a primary inducer of cutaneous inflammation in transgenic mice. Proc. Natl. Acad. Sci. USA 91, 9710–9714.PubMedCrossRefGoogle Scholar
  49. 49.
    Williams, I. R., Ort, R. J., and Kupper, T. S. (1994) Keratinocyte expression of B7–1 in transgenic mice amplifies the primary immune response to cutaneous antigens. Proc. Natl. Acad. Sci. USA 91, 12,780–12,784.PubMedCrossRefGoogle Scholar
  50. 50.
    Arbeit, J. M., Munger, K., Howley, P. M., and Hanahan, D. (1994) Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J. Virol. 68, 4358–4368.PubMedGoogle Scholar
  51. 51.
    Robles, A. I., Larcher, F., Whalin, R. B., Murillas, R., Richie, E., Gimenez-Conti, I. B., et al. (1996) Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc. Natl. Acad. Sci. USA 93, 7634–7638.PubMedCrossRefGoogle Scholar
  52. 52.
    Williams, I. R., Rawson, E. A., Manning, L., Karaoli, T., Rich, B. E., and Kupper, T. S. (1997) IL-7 overexpression in transgenic mouse keratinocytes causes a lymphoproliferative skin disease dominated by intermediate TCR cells: evidence for a hierarchy in IL-7 responsiveness among cutaneous T cells. J. Immunol. 159, 3044–3056.PubMedGoogle Scholar
  53. 53.
    Gulliver, G. A., Herber, R. L., Liem, A., and Lambert, P. F. (1997) Both conserved region 1 (CR1) and CR2 of the human papillomavirus type 16 E7 oncogene are required for induction of epidermal hyperplasia and tumor formation in transgenic mice. J. Virol. 71, 5905–5914.PubMedGoogle Scholar
  54. 54.
    Kaya, G., Rodriguez, I., Jorcano, J. L., Vassalli, P., and Stamenkovic, I. (1997) Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev. 11, 996–1007.PubMedCrossRefGoogle Scholar
  55. 55.
    Bol, D., Kiguchi, K., Beltran, L., Rupp, T., Moats, S., Gimenez-Conti, I., et al. (1998) Severe follicular hyperplasia and spontaneous papilloma formation in transgenic mice expressing the neu oncogene under the control of the bovine keratin 5 promoter. Mol. Carcinog. 21, 2–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Brown, K., Strathdee, D., Bryson, S., Lambie, W. and Balmain, A. (1998) The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol. 8, 516–524.PubMedCrossRefGoogle Scholar
  57. 57.
    Raife, T. J., Lager, D. J., Peterson, J. J., Erger, R. A., and Lentz, S. R. (1998) Keratinocyte-specific expression of human thrombomodulin in transgenic mice: effects on epidermal differentiation and cutaneous wound healing. J. Investig. Med. 46, 127–133.PubMedGoogle Scholar
  58. 58.
    Xie, W., Wu, X., Chow, L. T., Chin, E., Paterson, A. J., and Kudlow, J. E. (1998) Targeted expression of activated erbB-2 to the epidermis of transgenic mice elicits striking developmental abnormalities in the epidermis and hair follicles. Cell Growth Differ. 9, 313–325.PubMedGoogle Scholar
  59. 59.
    Pierce, A. M., Fisher, S. M., Conti, C. J., and Johnson, D. G. (1998) Deregulated expression of E2F1 induces hyperplasia and cooperates with ras in skin tumor development. Oncogene 16, 1267–1276.PubMedCrossRefGoogle Scholar
  60. 60.
    Greenhalgh, D. A., Quintanilla, M. I., Orengo, C. C., Barber, J. L., Eckhardt, J. N., Rothnagel, J. A., and Roop, D. R. (1993) Cooperation between v-fos and v-rasHA induces autonomous papillomas in transgenic epidermis but not malignant conversion. Cancer Res. 53, 5071–5075.PubMedGoogle Scholar
  61. 61.
    Werner, S., Weinberg, W., Liao, X., Peters, K. G., Blessing, M., Yuspa, S. H., et al. (1993) Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J. 12, 2635–2643.PubMedGoogle Scholar
  62. 62.
    Auewarakul, P., Gissmann, L., and Cid-Arregui, A. (1994) Targeted expression of the E6 and E7 oncogenes of human papillomavirus type 16 in the epidermis of transgenic mice elicits generalized epidermal hyperplasia involving autocrine factors. Mol. Cell Biol. 14, 8250–8258.PubMedGoogle Scholar
  63. 63.
    Cui, W., Fowlis, D. J., Cousins, F. M., Duffie, E., Bryson, S., Balmain, A., and Akhurst, R. J. (1995) Concerted action of TGF-β 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev. 9, 945–955.PubMedCrossRefGoogle Scholar
  64. 64.
    Carroll, J. M., Romero, M. R., and Watt, F. M. (1995) Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83, 957–968.PubMedCrossRefGoogle Scholar
  65. 65.
    Carroll, J. M., Crompton, T., Seery, J. P., and Watt, F. M. (1997) Transgenic mice expressing IFN-gamma in the epidermis have eczema, hair hypopigmentation, and hair loss. J. Invest. Dermatol. 108, 412–422.PubMedCrossRefGoogle Scholar
  66. 66.
    Feng, X., Peng, Z. H., Di, W., Li, X. Y., Rochette-Egly, C., Chambon, P., et al. (1997) Suprabasal expression of a dominant-negative RXR alpha mutant in transgenic mouse epidermis impairs regulation of gene transcription and basal keratinocyte proliferation by RAR-selective retinoids. Genes Dev. 11, 59–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang, X. J., Greenhalgh, D. A., Jiang, A., He, D., Zhong, L., Medina, D., et al. (1998) Expression of a p53 mutant in the epidermis of transgenic mice accelerates chemical carcinogenesis. Oncogene 17, 35–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Tinsley, J. M., Fisher, C., and Searle, P. F. (1992) Abnormalities of epidermal differentiation associated with expression of the human papillomavirus type 1 early region in transgenic mice. J. Gen. Virol. 73, 1251–1260.PubMedCrossRefGoogle Scholar
  69. 69.
    Fowlis, D. J., Cui, W., Johnson, S. A., Balmain, A., and Akhurst, R. J. (1996) Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor β 1 in the skin of transgenic mice. Cell Growth Differ. 7, 679–687.PubMedGoogle Scholar
  70. 70.
    Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.PubMedCrossRefGoogle Scholar
  71. 71.
    Furth, P. A., St. Onge, L., Boger, H., Gruss, P., Gossen, M., Kistner, A., et al. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306.PubMedCrossRefGoogle Scholar
  72. 72.
    Passman, R. S. and Fishman, G. I. (1994) Regulated expression of foreign genes in vivo after germline transfer. J. Clin. Invest. 94, 2421–2425.PubMedCrossRefGoogle Scholar
  73. 73.
    Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lubbert, H., and Bujard, H. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10,933–10,938.PubMedCrossRefGoogle Scholar
  74. 74.
    Schultze, N., Burki, Y., Lang, Y., Certa, U., and Bluethmann, H. (1996) Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nature Biotechnol. 14, 499–503.CrossRefGoogle Scholar
  75. 75.
    Freundlieb, S., Schirra-Muller, C., and Bujard, H. (1999) A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J. Gene Med. 1, 4–12.PubMedCrossRefGoogle Scholar
  76. 76.
    Huang, C. J., Spinella, F., Nazarian, R., Lee, M. M., Dopp, J. M., and de Vellis, J. (1999) Expression of green fluorescent protein in oligodendrocytes in a time-and level-controllable fashion with a tetracycline-regulated system. Mol. Med. 5, 129–137.PubMedGoogle Scholar
  77. 77.
    Xie, W., Chow, L. T., Paterson, A. J., Chin, E., and Kudlow, J. E. (1999) Conditional expression of the ErbB2 oncogene elicits reversible hyperplasia in stratified epithelia and up-regulation of TGFα expression in transgenic mice. Oncogene 18, 3593–3607.PubMedCrossRefGoogle Scholar
  78. 78.
    Gu, H., Zou, Y. R., and Rajewsky, K. (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164.PubMedCrossRefGoogle Scholar
  79. 79.
    Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.PubMedCrossRefGoogle Scholar
  80. 80.
    Kuhn, R., Schwenk, F., Aguet, M., and Rajewsky, K. (1995) Inducible gene targeting in mice. Science 269, 1427–1429.PubMedCrossRefGoogle Scholar
  81. 81.
    St. Onge, L., Furth, P. A., and Gruss, P. (1996) Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res. 24, 3875–3877.PubMedCrossRefGoogle Scholar
  82. 82.
    Wang, X. J., Liefer, K. M., Tsai, S., O’Malley, B. W., and Roop, D. R. (1999) Development of gene-switch transgenic mice that inducibly express transforming growth factor β in the epidermis. Proc. Natl. Acad. Sci. USA 96, 8483–8488.PubMedCrossRefGoogle Scholar
  83. 83.
    Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.PubMedCrossRefGoogle Scholar
  84. 84.
    Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Joanna B. Wilson
    • 1
  • Mark E. Drotar
    • 1
  1. 1.I.B.L.S. Division of Molecular GeneticsUniversity of GlasgowGlasgowUK

Personalised recommendations