Skip to main content

Creation and Use of a Cre Recombinase Transgenic Database

  • Protocol
Gene Knockout Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 158))

Abstract

Embryonic stem (ES) cell-mediated transgenic approaches have revolutionized mammalian genetics in the last decade. Close to 4000 genes have been targeted to date. Analysis of these genetic alterations has provided an unprecedented understanding of critical gene functions that underlie normal developmental and disease mechanisms in mammals. We have also learned, however, that mammalian genetic determination is complex: genes have multiple functions during the life of an individual. In addition, mammalian genetic determination often utilizes gene families, in which the members have similar structure and overlapping expression and functions. These two phenomena pointed out some limitations of the gene-targeting approach. In many cases a gene “knockout” resulted in early embryonic lethality, which obscured the study of potential later functions. In other cases the “knockout” did not have any phenotype due to the compensation of the gene deficiency by other family members. These limitations have called for further development of the powerful gene-targeting technology (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagy, A. and Rossant, J. (1996) Targeted mutagenesis: analysis of phenotype without germ line transmission. J. Clin. Invest. 97, 1360–1365.

    Article  PubMed  CAS  Google Scholar 

  2. Rossant, J. and Nagy A. (1995) Genome engineering: the new mouse genetics. Nat. Med. 1, 592–594.

    Article  PubMed  CAS  Google Scholar 

  3. Lobe, C. and Nagy, A. (1997) Conditional genome alterations. BioEssay 20, 200–208.

    Article  Google Scholar 

  4. Kilby, N. J., Snaith, M. R., and Murray, J. A. H. (1993) Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421.

    Article  PubMed  CAS  Google Scholar 

  5. Dymecki, S. M. (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196.

    Article  PubMed  CAS  Google Scholar 

  6. Sauer, B. and Henderson, N. (1988) Site-specific DNA recombination in mamalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85, 5166–5270.

    Article  PubMed  CAS  Google Scholar 

  7. Argos, P., Landy, A., Abremski, K., et al. (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 5, 433–440.

    PubMed  CAS  Google Scholar 

  8. Hoess, R. H. and Abremski, K. (1985) Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J. Mol. Biol. 181, 351–362.

    Article  PubMed  CAS  Google Scholar 

  9. Sauer, B. and Henderson, N. (1989) Cre-stimulated recombination at loxP-containing DNA equences placed into the mammalian genome. Nucleic Acid Res. 17, 147–161.

    Article  PubMed  CAS  Google Scholar 

  10. Sauer, B. and Henderson, N. (1990) Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biologist 2, 441–449.

    PubMed  CAS  Google Scholar 

  11. Lakso, M., Sauer, B., B. Mosinger, J., et al. (1992) Targeted oncogene activity by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6232–6236.

    Article  PubMed  CAS  Google Scholar 

  12. Gu, H., Zou, Y. R., and Rajewsky, K. (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164.

    Article  PubMed  CAS  Google Scholar 

  13. Gordon, J. W., Scangos, G. A., Plotkin, D. J., et al. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 77, 7380–7384.

    Article  PubMed  CAS  Google Scholar 

  14. Brinster, R. L., Chen, H. Y., and Trumbauer, M. E. (1981) Mouse oocytes transcribe injected Xenopus 5S RNA gene. Science 211, 396–398.

    Article  PubMed  CAS  Google Scholar 

  15. Brinster, R. L., Chen, H. Y., Trumbauer, M., Senear, A. W., et al. (1981) Somatic expression of herpes thymidine kinase in mice following injection of fusion gene into eggs. Cell 27, 223–231.

    Article  PubMed  CAS  Google Scholar 

  16. Palmiter, R. D. and Brinster, R. L. (1986) Germ-line transformation of mice. Annu. Rev. Genet. 20, 645–499.

    Article  Google Scholar 

  17. Lewandoski, M. and Martin, G. R. (1997) Cre-mediated chromosome loss in mice. Nat. Genet. 17, 223–225.

    Article  PubMed  CAS  Google Scholar 

  18. Meyers, E. N., Lewandoski, M., Martin, G. R. (1998) An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat. Genet. 18, 136–141.

    Article  PubMed  CAS  Google Scholar 

  19. Gu, H., Marth, J. D., Orban, P. C., et al. (1994) Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.

    Article  PubMed  CAS  Google Scholar 

  20. Tsien, J. Z., Huerta, P. T., Tonegawa, S. (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  21. Nagy, A., Moens, C. B., Ivanyi, E., et al. (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr. Biol. 8, 661–664.

    Article  PubMed  CAS  Google Scholar 

  22. Jacks, T., Shih, T. S., Schmitt, E. M., et al. (1994) Tumor predisposition in mice heterozygous for a targeted mutation in Nf1. Nat. Genet. 7, 353–361.

    Article  PubMed  CAS  Google Scholar 

  23. Carmeliet, P., Ferreira, V., Breier, G., et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439.

    Article  PubMed  CAS  Google Scholar 

  24. Moens, C. B., Auerbach, A. B., Conlon, R. A., et al. (1992) A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Dev. 6, 691–704.

    Article  PubMed  CAS  Google Scholar 

  25. St.-Onge, L., Furth, P. A., and Gruss, P. (1996) Temporal control of the Cre recombinase in transgenic mice by tetracycline responsive promoter. Nucleic Acids Res. 24, 3875–3877.

    Article  PubMed  CAS  Google Scholar 

  26. Brocard, J., Warot, X., Wendling, O., et al. (1997) Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc. Natl. Acad. Sci. USA 94, 14,559–14,563.

    Article  PubMed  CAS  Google Scholar 

  27. Schwenk, F., Kuhn, R., Angrand, P. O., et al. (1998) Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acid Res. 26, 1427–1432.

    Article  PubMed  CAS  Google Scholar 

  28. Sakai, K. and Miyazaki, J. (1997) A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the Cre transgene transmission. Biochem. Biophys. Res. Commun. 237, 318–324.

    Article  PubMed  CAS  Google Scholar 

  29. Araki, K., Araki, M., Miyazaki, J., and Vassalli, P. (1995) Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 160–164.

    Article  PubMed  CAS  Google Scholar 

  30. Ramirez-Slois, R., Liu, P., and Bradley, A. (1995) Chromosome engineering in mice. Nature 378, 720–724.

    Article  Google Scholar 

  31. Smith, A. J. H., Sousa, M. A. D., Kwabi-Addo, et al. (1995) A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat. Genet. 9, 376–385.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nagy, A., Mar, L. (2001). Creation and Use of a Cre Recombinase Transgenic Database. In: Tymms, M.J., Kola, I. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 158. Humana Press. https://doi.org/10.1385/1-59259-220-1:95

Download citation

  • DOI: https://doi.org/10.1385/1-59259-220-1:95

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-572-0

  • Online ISBN: 978-1-59259-220-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics