Skip to main content

Transgenic Studies in the Mouse

Improving the Technology Towards a Conditional Temporal and Spatial Approach

  • Protocol
Gene Knockout Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 158))

  • 1379 Accesses

Abstract

The biological consequences of altered gene expression as a result of gain of function mutations or gene dosage remains an important question in molecular biology and molecular medicine. This is of particular interest in medical research due to the many clinically relevant diseases that involve altered gene expression. The biology of cancer is one such example whereby a spectrum of genes may be inappropriately activated or inactivated contributing to disease progression. These genes provide ideal and direct targets for the development of cancer therapeutics and emphasize the requirement for transgenic mice as in vivo disease models. Furthermore, the inappropriate expression of transcription factor encoding genes may lead to dysregulation of gene expression and significant biological consequences. These questions can only be addressed by using technical strategies that allow the introduction or activation of a test protein in a given spatial and temporal manner. New technologies are continually being sought in order to generate sophisticated animal models that appropriately reflect the genetic basis of the disease of interest. These animals have the added benefit of being invaluable in drug discovery (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polites, H. G. (1996) Transgenic model applications to drug discovery. Int. J. Exp. Pathol. 77, 257–262.

    PubMed  CAS  Google Scholar 

  2. Benoist, C. and Chambon, P. (1981) In vivo sequence requirements of the SV40 early promoter region. Nature 290, 304–310.

    Article  PubMed  CAS  Google Scholar 

  3. McKnight, S. L. (1982) Functional relationships between transcriptional control signals of the thymidine kinase gene of herpes simplex virus. Cell 31, 355–365.

    Article  PubMed  CAS  Google Scholar 

  4. Boshart, M., Weber, F., Jahn, G., et al. (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530.

    Article  PubMed  CAS  Google Scholar 

  5. Ucker, D. S., Ross, S. R., and Yamamoto, K. R. (1981) Mammary tumor virus DNA contains sequences required for its hormone-regulated transcription. Cell 27, 257–266.

    Article  PubMed  CAS  Google Scholar 

  6. Land, H., Parada, L. F., and Weinberg, R. A. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602.

    Article  PubMed  CAS  Google Scholar 

  7. Land, H., Parada, L. F., and Weinberg, R. A. (1983) Cellular oncogenes and multistep carcinogenesis. Science 222, 771–778.

    Article  PubMed  CAS  Google Scholar 

  8. Thompson, T. C, Southgate, J., Kitchener, G., and Land, H. (1989) Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56, 917–930.

    Article  PubMed  CAS  Google Scholar 

  9. Compere, S. J., Baldacci, P., Sharpe, A. H., et al. (1989) The ras and myc oncogenes cooperate in tumor induction in many tissues when introduced into midgestation mouse embryos by retroviral vectors. Proc. Natl. Acad. Sci. USA 86, 2224–2228.

    Article  PubMed  CAS  Google Scholar 

  10. Palmiter, R. D. and Brinster, R. L. (1986) Germ-line transformation of mice. Ann. Rev. Genet. 20, 465–499.

    Article  PubMed  CAS  Google Scholar 

  11. Sinn, E., Muller, W., Pattengale, P., et al. (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–475.

    Article  PubMed  CAS  Google Scholar 

  12. Muller, W. J., Sinn, E., Pattengale, P. K., et al. (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54, 105–115.

    Article  PubMed  CAS  Google Scholar 

  13. Pattengale, P. K., Stewart, T. A., Leder, A., et al. (1989) Animal models of human disease. Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes. Am. J. Pathol. 135, 39–61.

    PubMed  CAS  Google Scholar 

  14. Games, D., Adams, D., Alessandrini, R., et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  15. Baskar, J. F., Smith, P. P., Ciment, et al. (1996) Developmental analysis of the cytomegalovirus enhancer in transgenic animals. J. Virol. 70, 3215–3226.

    PubMed  CAS  Google Scholar 

  16. Schmidt, E. V., Christoph, G, Zeller, R., and Leder, P. (1990) The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol. Cell. Biol. 90, 4406–4411.

    Google Scholar 

  17. Baskar, J. F., Smith, P. P., Nilaver, G., et al. (1996) The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J. Virol. 70, 3207–3214.

    PubMed  CAS  Google Scholar 

  18. Mizushima, S. and Nagata, S. (1990) pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18, 5322.

    Article  PubMed  CAS  Google Scholar 

  19. Schorpp, M., Jager, R., Schellander, K., et al. (1996) The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res. 24, 1787–1788.

    Article  PubMed  CAS  Google Scholar 

  20. Schlaeger, T. M., Bartunkova, S., Lawitts, J. A., et al. (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc. Natl. Acad. Sci. USA 94, 3058–3063.

    Article  PubMed  CAS  Google Scholar 

  21. Race, R. E., Priola, S. A., Bessen, R. A., et al. (1995) Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron 15, 1183–1191.

    Article  PubMed  CAS  Google Scholar 

  22. Ta et al. Matsui, H., and Raghow, R. (1997) A minimal murine Msx-1 gene promoter. J. Biol. Chem. 272, 22,667–22,678.

    Article  Google Scholar 

  23. Subramaniam, A., Jones, W. K., Gulick, J., et al. (1991) Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266, 24,613–24,620.

    PubMed  CAS  Google Scholar 

  24. Mayo, K. E., Warren, R., and Palmiter, R. D. (1982) The mouse metallothionein-I gene is transcriptionally regulated by cadmium following transfection into human or mouse cells. Cell 29, 99–108.

    Article  PubMed  CAS  Google Scholar 

  25. Youakim, A., Hathaway, H. J., Miller, D. J., et al. (1994) Overexpressing sperm surface β1,4-galactosyltransferase in transgenic mice affects multiple aspects of sperm-egg interactions. J. Cell Biol. 126, 1573–1583.

    Article  PubMed  CAS  Google Scholar 

  26. Hathaway, H. J. and Shur, B. D. (1996) Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface β1,4-galactosyltransferase. Development 122, 2859–2872.

    PubMed  CAS  Google Scholar 

  27. Peters, M., Odenthal, M., Schirmacher, P., et al. (1997) Soluble IL-6 receptor leads to a paracrine modulation of the IL-6 induced hepatic acute phase response in double transgenic mice. J. Immunol. 159, 1474–1481.

    PubMed  CAS  Google Scholar 

  28. DeRocco, S. E., Iozzo, R., Ma, X. P., et al. (1997) Ectopic expression of A-myb in transgenic mice causes follicular hyperplasia and enhanced B lymphocyte proliferation. Proc. Natl. Acad. Sci. USA 94, 3240–3244.

    Article  PubMed  CAS  Google Scholar 

  29. Sumarsono, S. H., Wilson, T. J., Tymms, M. J., et al. (1996) Down’s syndromelike skeletal abnormalities in Ets2 transgenic mice. Nature 379, 534–537.

    Article  PubMed  CAS  Google Scholar 

  30. Lee, F., Hall, C. V., Ringold, G. M., et al. (1984) Functional analysis of the steroid hormone control region of mouse mammary tumor virus. Nucleic Acids Res. 12, 4191–4206.

    Article  PubMed  CAS  Google Scholar 

  31. Krane, I. M. and Leder, P. (1996) NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 12, 1781–1788.

    PubMed  CAS  Google Scholar 

  32. Kitsberg, D. I. and Leder, P. (1996) Keratinocyte growth factor induces mammary adenocarcinoma in transgenic mice. Oncogene 13, 2507–2515.

    PubMed  CAS  Google Scholar 

  33. Lane, T. F. and Leder, P. (1997) Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15, 2133–2144.

    Article  PubMed  CAS  Google Scholar 

  34. Pestka, S., Langer, J. A., Zoon, K. C, and Samuel, C. E. (1987) Interferons and their actions. Ann. Rev. Biochem. 56, 727–777.

    Article  PubMed  CAS  Google Scholar 

  35. Hug, H., Costas, M., Staeheli, P., Aebi, M., and Weissmann, C. (1988) Organization of the murine Mx gene and characterization of its interferon-and virus-inducible promoter. Mol. Cell. Biol. 8, 3065–3079.

    PubMed  CAS  Google Scholar 

  36. Whyatt, L. M., Duwel, A., Smith, A. G., and Rathjen, P. D. (1993) The responsiveness of embryonic stem cells to alpha and beta interferons provides the basis of an inducible expression system for analysis of developmental control genes. Mol. Cell Biol. 13, 7971–7976.

    PubMed  CAS  Google Scholar 

  37. Kuhn, R., Schwenk, F., Aguet, M., and Rajewsky, K. (1995) Inducible gene targeting in mice. Science 269, 1427–1429.

    Article  PubMed  CAS  Google Scholar 

  38. No, D., Yao, T.-P., and Evans, R. (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351.

    Article  PubMed  CAS  Google Scholar 

  39. Smith, D. F. and Toft, D. O. (1993) Steroid receptors and their associated proteins. Mol. Endocrinol. 7, 4–11.

    Article  PubMed  CAS  Google Scholar 

  40. Mader, S. and White, J. H. (1993) A steroid-inducible promoter for the controlled overexpression of cloned genes in eukaryotic cells. Proc. Natl. Acad. Sci. USA 90, 5603–5607.

    Article  PubMed  CAS  Google Scholar 

  41. Picard, D. (1993) Steroid-binding domains for regulating the functions of heterologous proteins in cis. Trends Cell Biol. 3, 278–280.

    Article  PubMed  CAS  Google Scholar 

  42. Mattioni, T., Louvion, J.-F., and Picard, D. (1994) Regulation of protein activities by fusion to steroid binding domains. Methods Cell Biol. 43, 335–352.

    Article  PubMed  CAS  Google Scholar 

  43. Danielian, P. S., White, R., Hoare, S. A, et al. (1993) Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol. Endocrinol. 7, 232–240.

    Article  PubMed  CAS  Google Scholar 

  44. Danielian, P. S., White, R., Lees, J. A., and Parker, M. G. (1992) Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033.

    PubMed  CAS  Google Scholar 

  45. Littlewood, T. D., Hancock, D. C., Danielian, P. S., et al. (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690.

    Article  PubMed  CAS  Google Scholar 

  46. McCarthy, S. A., Chen, D., Yang, B. S., et al. (1997) Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and induction of heparin-binding epidermal growth factor expression by oncogenic Raf-1. Mol. Cell Biol. 17, 2401–2412.

    PubMed  CAS  Google Scholar 

  47. Zhang, Y., Riesterer, C., Ayrall, A.-M., Sablitzky, F., Littlewood, T. D., and Reth, M. (1996) Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548.

    Article  PubMed  CAS  Google Scholar 

  48. Braselmann, S., Graninger, P., and Busslinger, M. (1993) A selective transcrip-tional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. Proc. Natl. Acad. Sci. USA 90, 1657–61.

    Article  PubMed  CAS  Google Scholar 

  49. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  50. Gossen, M., Freundlieb, S., Bender, G., et al. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  51. Kistner, A., Gossen, M., Zimmermann, F., et al. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10,933–10,938.

    Article  PubMed  CAS  Google Scholar 

  52. Shockett, P., Difilippantonio, M., Hellman, N., and Schatz, D. G. (1995) A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92, 6522–6526.

    Article  PubMed  CAS  Google Scholar 

  53. Furth, P. A., St.-Onge, L., et al. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306.

    Article  PubMed  CAS  Google Scholar 

  54. Chrast-Balz, J. and van Huijsduijnen, R. H. (1996) Bi-directional gene switching with the tetracycline repressor and a novel tetracycline antagonist. Nucleic Acids Res. 24, 2900–2904.

    Article  PubMed  CAS  Google Scholar 

  55. Mayford, M. Bach, M. E., Huang, Y.-Y., et al. (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683.

    Article  PubMed  CAS  Google Scholar 

  56. Bohl, D., Naffakh, N., and Heard, J. M. (1997) Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat. Med. 3, 299–305.

    Article  PubMed  CAS  Google Scholar 

  57. Wu, Z., Xie, Y., Bucher, N. L. R., and Farmer, S. R. (1995) Conditional ectopic expression of C/EBPβ in NIH-3T3 cells induces PPARγ and stimulates adipo-genesis. Genes Dev. 9, 2350–2363.

    Article  PubMed  CAS  Google Scholar 

  58. Lutz, W., Stohr, M., Schurmann, J., et al. (1996) Conditional expression of N-myc in human neuroblastoma cells increases expression of α-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13, 803–812.

    PubMed  CAS  Google Scholar 

  59. Nguyen, H., Lin, R., and Hiscott, J. (1997) Activation of multiple growth regulatory genes following inducible expression of IRF-1 and IRF/RelA fusion proteins. Oncogene 15, 1425–1435.

    Article  PubMed  CAS  Google Scholar 

  60. Speed, C. J., Little, P. J., Hayman, J. A., and Mitchell, C. A. (1996) Underexpression of the 43 kDa inositol polyphosphate 5-phosphate is associated with cellular transformation. EMBO J. 15, 4852–4861.

    PubMed  CAS  Google Scholar 

  61. Sheikh, M. S., Chen, Y. Q., Smith, M. L., and Fornace Jr, A. J. (1997) Role of p21Waf/Cip1/Sdi1 in cell death and dna repair as studied using a tetracycline-inducible system in p53-deficient cells. Oncogene 14, 1875–1882.

    Article  PubMed  CAS  Google Scholar 

  62. Kwon, H., Pelletier, N., DeLuca, C, et al. (1998) Inducible expression of IκBα repressor mutants interferes with NF-κB activity and HIV-1 replication in Jurkat T cells. J. Biol. Chem. 273, 7431–7440.

    Article  PubMed  CAS  Google Scholar 

  63. St.-Onge, L., Furth, P. A., and Gruss, P. (1996) Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res. 24, 3875–3877.

    Article  PubMed  CAS  Google Scholar 

  64. Paulus, W., Baur, I., Boyce, F. M., et al. (1996) Self-contained, tetracycline-regulated retroviral vector system for gene delivery to mammalian cells. J Virol. 70, 62–67.

    PubMed  CAS  Google Scholar 

  65. Evan, G. I., Lewis, G. K., Ramsay, G, and Bishop, J. M. (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell Biol. 5, 3610–3616.

    PubMed  CAS  Google Scholar 

  66. Roberts, R. W. and Szostak, J. W. (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12,297–12,302.

    Article  PubMed  CAS  Google Scholar 

  67. Fan, H., Villegas, C., and Wright, J. A. (1996) Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc. Natl. Acad. Sci. USA 93, 14,036–14,040.

    Article  PubMed  CAS  Google Scholar 

  68. Semmes, O. J., Barret, J. F., Dang, C. V., and Jeang, K. T. (1996) Human T-cell leukemia virus type I tax masks c-Myc function through a cAMP-dependent pathway. J. Biol. Chem. 271, 9730–9738.

    Article  PubMed  CAS  Google Scholar 

  69. Hubberstey, A., Yu, G., Loewith, R., et al. (1996) Mammalian CAP interacts with CAP, CAP2, and actin. J. Cell. Biochem. 61, 459–466.

    Article  PubMed  CAS  Google Scholar 

  70. Ng, G. Y., Trogadis, J., Stevens, J., et al. (1995) Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization. Proc. Natl. Acad. Sci. USA 92, 10,157–10,161.

    Article  PubMed  CAS  Google Scholar 

  71. Wada, J. and Kanwar, Y. S. (1998) Characterisation of mammalian translocase of inner mitochondrial membrane (Tim44) isolated from diabetic newborn mouse kidney. Proc. Natl. Acad. Sci. USA 95, 144–149.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang, Y. and Kaplan, G. G. (1998) Characterisation of replication-competent hepatitis A virus constructs containing insertions at the N terminus of the polyprotein. J. Virol. 72, 349–357.

    PubMed  CAS  Google Scholar 

  73. Wickham, T. J., Lee, G. M., Titus, J. A., et al. (1997) Targeted adenovirus-mediated gene delivery to T cells via CD3. J. Virol. 71, 7663–7669.

    PubMed  CAS  Google Scholar 

  74. Wang, Z., Luo, T., and Roeder, R. G. (1997) Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev. 11, 2371–2382.

    Article  PubMed  CAS  Google Scholar 

  75. Mazumdar, M., Mikami, A., Gee, M. A., and Vallee, R. B. (1996) In vitro motility from recombinant dynein heavy chain. Proc. Natl. Acad. Sci. USA 93, 6552–6556.

    Article  PubMed  CAS  Google Scholar 

  76. Chalfie, M., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  77. Peters, K. G., Rao, P. S., Bell, B. S., and Kindman, L. A. (1995) Green fluorescent fusion proteins: powerful tools for monitoring protein expression in live zebrafish embryos. Dev. Biol. 171, 252–257.

    Article  PubMed  CAS  Google Scholar 

  78. Marshall, J., Molloy, R., Moss, G. W., et al. (1995) The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function. Neuron 14, 211–215.

    Article  PubMed  CAS  Google Scholar 

  79. Chiocchetti, A., Tolosano, E., Hirsch, E., et al. (1997) Green fluorescent protein as a reporter of gene expression in transgenic mice. Biochim. Biophys. Acta 1352, 193–202.

    PubMed  CAS  Google Scholar 

  80. McKnight, R. A., Wall, R. J., and Hennighausen, L. (1995) Expression of genomic and cDNA transgenes after co-integration in transgenic mice. Transgenic Res. 4, 39–43.

    Article  PubMed  CAS  Google Scholar 

  81. Brinster, R. L., Allen, J. M., Behringer, R. R., et al. (1988) Introns increase tran-scriptional efficiency in transgenic mice. Proc. Natl. Acad. Sci. USA 85, 836–840.

    Article  PubMed  CAS  Google Scholar 

  82. Palmiter, R. D., Sandgren, E. P., Avarbock, M. R., et al. (1991) Heterologous introns can enhance expression of transgenes in mice. Proc. Natl. Acad. Sci. USA 88, 478–482.

    Article  PubMed  CAS  Google Scholar 

  83. Choi, T., Huang, M., Gorman, C, and Jaenisch, R. (1991) A generic intron increases gene expression in transgenic mice. Mol. Cell. Biol. 11, 3070–3074.

    PubMed  CAS  Google Scholar 

  84. Whitelaw, C. B. A., Archibald, A. L., Harris, S., et al. (1991) Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res. 1, 3–13.

    Article  PubMed  CAS  Google Scholar 

  85. Huang, M. T. F. and Gorman, C. M. (1990) Intervening sequences increase efficiency of RNA 3′ processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 18, 937–947.

    Article  PubMed  CAS  Google Scholar 

  86. Liska, D. J., Reed, M. J., Sage, H., and Bornstein, P. (1994) Cell-specific expression of α1(I) collagen-hGH minigenes in transgenic mice. J. Cell Biol. 125, 695–704.

    Article  PubMed  CAS  Google Scholar 

  87. Stief, A., Winter, D. M., Stratling, W. H., and Sippel, A. E. (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature 341, 343–345.

    Article  PubMed  CAS  Google Scholar 

  88. Klehr, D., Maass, K., and Bode, J. (1991) Scaffold-attached regions from the human Interferon β domain can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry 30, 1264–1270.

    Article  PubMed  CAS  Google Scholar 

  89. McKnight, R. A., Shamay, A., Sankaran, L., et al. (1992) Matrix-attachment regions can impact position-independent regulation of a tissue-specific gene in transgenic mice. Pro. Natl. Acad. Sci. USA 89, 6943–6947.

    Article  CAS  Google Scholar 

  90. Festenstein, R., Tolaini, M., Corbella, P., et al. (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271, 1123–1125.

    Article  PubMed  CAS  Google Scholar 

  91. Ortiz, B. D., Cado, D., Chen, V., et al. (1997) Adjacent DNA elements domi-nantly restrict the ubiquitous activity of a novel chromatin-opening region to specific tissues. EMBO J. 16, 5037–5045.

    Article  PubMed  CAS  Google Scholar 

  92. Lamb, B. T. and Gearhart, J. D. (1995) YAC transgenics and the study of genetics and human disease. Curr. Opin. Gen. Dev. 5, 342–348.

    Article  CAS  Google Scholar 

  93. Peterson, K. R., Clegg, C. H., Li, Q., and Stamatoyannopoulos, G. (1997) Production of transgenic mice with yeast artificial chromosomes. Trends Genet. 13, 61–66.

    Article  PubMed  CAS  Google Scholar 

  94. Smith, D. J., Zhu, Y., Zhang, J., et al. (1995) Construction of a panel of transgenic mice containing a contiguous 2-Mb set of YAC/P1 clones from human chromosome 21q22. 2. Genomics 27, 425–434.

    Article  PubMed  CAS  Google Scholar 

  95. Smith, D. J., Stevens, M. E., Sudanagunta, S. P., et al. (1997) Functional screening of 2 Mb of human chromosome 21q22. 2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat. Genet. 16, 28–36.

    Article  PubMed  CAS  Google Scholar 

  96. Gallie, D. R., Sleat, D. E., Watts, J. W., et al. (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 8, 3257–3273.

    Article  Google Scholar 

  97. Dobie, K., Mehtali, M., McClenaghan, M., and Lathe, R. (1997) Variegated gene expression in mice. Trends Genet. 13, 127–130.

    Article  PubMed  CAS  Google Scholar 

  98. Garrick, D., Fiering, S., Martin, D. I. K., and Whitelaw, E. (1998) Repeat-induced gene silencing in mammals. Nat. Genet. 18, 56–59.

    Article  PubMed  CAS  Google Scholar 

  99. Robertson, G., Garrick, D., Wilson, M., et al. (1996) Age-dependent silencing of globin transgenes in the mouse. Nucleic Acids Res. 24, 1465–1471.

    Article  PubMed  CAS  Google Scholar 

  100. Araki, K., Araki, M., and Yamamura, K. (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. 25, 868–872.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ristevski, S. (2001). Transgenic Studies in the Mouse. In: Tymms, M.J., Kola, I. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 158. Humana Press. https://doi.org/10.1385/1-59259-220-1:319

Download citation

  • DOI: https://doi.org/10.1385/1-59259-220-1:319

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-572-0

  • Online ISBN: 978-1-59259-220-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics