Genetically Engineered Mice

Husbandry and Resources
  • John J. Sharp
  • Carol C. Linder
  • Larry E. Mobraaten
Part of the Methods in Molecular Biology book series (MIMB, volume 158)


Random and selective techniques to alter the mouse genome are now providing powerful tools for biomedical research. These strains provide experimental systems for understanding gene function, for studying defects in specific human genetic diseases, for preclinical testing of therapeutic agents and for developing new therapeutic interventions such as gene therapy (1,2). Even for diseases such as AIDS, which are not normally considered to be of genetic origin, these model systems are important for understanding the underlying pathophysiology of the disease process. In addition, such model systems permit studies that are inappropriate or impossible in human beings. There now exist valuable mouse models for virtually every major category of human health with new strains being generated daily. The use of these strains is rapidly spreading to scientists who have never previously used mice for investigative purposes. The Induced Mutant Resource (IMR) was established at The Jackson Laboratory (TJL), Bar Harbor, ME, in 1993 with the purpose of selecting, importing, archiving, and distributing these genetically engineered mouse strains to the scientific community (3). Adding this resource was considered to be a natural extension of ongoing activities at The Laboratory (over 2500 stocks are currently available from TJL as breeding mice, frozen embryos, or DNA samples). Even so, in 1993 there was uncertainty about the extent to which such a resource would be utilized.


Congenic Strain Freeze Embryo Breeding Coloni Howard Hughes Medical Institute Sperm Cryopreservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bedell, M. A., Jenkins, N. A., and Copeland, N. G. (1997) Mouse models of human disease. Part I: techniques and resources for genetic analysis in mice. Genes Dev. 11, 1–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Bedell, M. A., Largaespada, D. A., Jenkins, N. A., and Copeland, N. G. (1997) Mouse models of human disease. Part II: recent progress and future directions. Genes Dev. 11, 11–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Sharp, J. J. and Davisson, M. T. (1994) The Jackson Laboratory Induced Mutant Resource. Lab Anim. 23, 32–40.Google Scholar
  4. 4.
    Gordon, J. W., Scangos, G. A., Plotkin, D. J., et al. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA 77, 7380–7384.PubMedCrossRefGoogle Scholar
  5. 5.
    Smithies, O., Gregg, R. G., Boggs, S. S., et al. (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234.PubMedCrossRefGoogle Scholar
  6. 6.
    Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.PubMedCrossRefGoogle Scholar
  7. 7.
    Gu, H., Marth, J. D., Orban, P. C., et al. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.PubMedCrossRefGoogle Scholar
  8. 8.
    Kistner, A., Gossen, M., Zimmermann, F., et al. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10,933–10,938.PubMedCrossRefGoogle Scholar
  9. 9.
    Schimenti, J. and Bucan, M. (1998) Functional genomics in the mouse: phenotype-based mutagenesis screens. Genome Res. 8, 698–710.PubMedGoogle Scholar
  10. 10.
    Friedrich, G. and Soriano, P. (1993) Insertional mutagenesis by retroviruses and promoter traps in embryonic stem cells. Methods Enzymol. 225, 681–701.PubMedCrossRefGoogle Scholar
  11. 11.
    Mangiarini, L., Sathasivam, K., Seller, M., et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.PubMedCrossRefGoogle Scholar
  12. 12.
    Ishibashi, S., Schwarz, M., Frykman, P. K., et al. (1996) Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J. Biol. Chem. 271, 18,017–18,023.PubMedCrossRefGoogle Scholar
  13. 13.
    Mombaerts, P., Clarke, A. R., Rudnicki, M. A., et al. (1992) Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360, 225–231.PubMedCrossRefGoogle Scholar
  14. 14.
    Kuhn, R., Lohler, J., Rennick, D., et al. (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274.PubMedCrossRefGoogle Scholar
  15. 15.
    Schorle, H., Holtschke, T., Hunig, T., et al. (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352, 621–624.PubMedCrossRefGoogle Scholar
  16. 16.
    Bristol, I. J., Mähler, M., Leiter, E. H., and Sundberg, J. P. (1997) Il10 tm1Cgn, an interleukin-10 gene targeted mutation. JAX Notes 471.Google Scholar
  17. 17.
    Mähler, M., Serreze, D., Evan, R., et al. (1996) Il2 tm1Hor, an interleuken-2 gene targeted mutation. JAX Notes 467.Google Scholar
  18. 18.
    Nielsen, L. L., Gurnani, M., Catino, J. J., and Tyler, R. D. (1995) In wap-ras transgenic mice, tumor phenotype but not cyclophosphamide-sensitivity is affected by genetic background, Anticancer Res. 15, 385–392.PubMedGoogle Scholar
  19. 19.
    Dietrich, W. F., Lander, E. S., Smith, J. S., et al. (1993) Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639.PubMedCrossRefGoogle Scholar
  20. 20.
    Gurney, M. E., Pu, H., Chiu, A. Y., et al. (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase. Science 264, 1772–1775.PubMedCrossRefGoogle Scholar
  21. 21.
    Simpson, E. M., Linder, C. C., Sargent, E. E., et al. (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat. Genet. 16, 19–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Dietrich, W. F., Miller, J., Steen, R., et al. (1996) A comprehensive genetic map of the mouse. Nature 380, 149–152.PubMedCrossRefGoogle Scholar
  23. 23.
    Mouse Genome Informatics (MGI) Resource, Mouse Genome Informatics (July 1998) The Jackson Laboratory, Bar Harbor, Maine. World Wide Web (URL:
  24. 24.
    Chisari, F. V., Klopchin, K., Moriyama, T., et al. (1989) Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59, 1145–1156.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacks, T., Remington, L., Williams, B. O., et al. (1994) Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Travis, J. (1992) Scoring a technical knockout in mice. Science 256, 1392–1394.PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson, C. (1993) Researchers win decision on knockout mouse pricing. Science 260, 23–24.PubMedGoogle Scholar
  28. 28.
    Whittingham, D. G., Leibo, S. P., and Mazur, P. (1972) Survival of mouse embryos frozen to −196 degrees and −269 degrees C. Science 178, 411–414.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilmut, I. (1972) The effect of cooling rate, warming rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci. II 11, 1071–1079.PubMedCrossRefGoogle Scholar
  30. 30.
    Sztein, J. M., Farley, J. S., Young, A. F., and Mobraaten, L. E. (1997) Motility of cryopreserved mouse spermatozoa affected by temperature of collection and rate of thawing. Cryobiology 35, 46–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Nakagata, N. and Takeshima, T. (1993) Cryopreservation of mouse spermatozoa from inbred and F1 hybrid strains. Jikken Dobutsu 42, 317–320.PubMedGoogle Scholar
  32. 32.
    Wakayama, T., Whittingham, D. G., and Yanagimachi, R. (1998) Production of normal offspring from mouse oocytes injected with spermatozoa cryopreserved with or without cryoprotection. J. Reprod. Fertil. 112, 11–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Sztein, J., Sweet, H., Farley, J., and Mobraaten L. E. (1998) Cryopreservation and orthotopic transplantation of mouse ovaries: new approach in gamete banking. Biol. Reprod. 58, 1071–1074.PubMedCrossRefGoogle Scholar
  34. 34.
    Avarbock, M. R., Brinster, C. J., and Brinster, R. L. (1996) Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat. Med. 2, 693–696.PubMedCrossRefGoogle Scholar
  35. 35.
    Woychik, R. P., Wassom, J. S., Kingsbury, D., and Jacobson, D. A. (1993) TBASE: a computerized database for transgenic animals and targeted mutations. Nature 363, 375–376.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • John J. Sharp
    • 1
  • Carol C. Linder
    • 1
  • Larry E. Mobraaten
    • 1
  1. 1.The Jackson LaboratoryBar Harbor

Personalised recommendations