Skip to main content

Triplex-Directed Site-Specific Genome Modification

  • Protocol
Gene Targeting Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 133))

  • 467 Accesses

Abstract

The ability to target and manipulate specific mammalian genes has been a long sought goal in biotechnology and biomedicine. The realization of this goal has only recently become feasible, with advances in genetic engineering. Through the use of gene targeting strategies, it is possible to replace genetic information on the chromosome, delete sequences from the chromosome, create transgenic mice, and develop new approaches to gene therapy of human genetic diseases (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capecchi, M. R. (1989) Altering the genome by homologous recombination. Science 244, 1288–1292.

    Article  PubMed  CAS  Google Scholar 

  2. Rothstein, R. (1983) One-step gene disruption in yeast. Methods Enzymol. 101, 202–211.

    Article  PubMed  CAS  Google Scholar 

  3. Botstein, D. and Fink, G. (1988) Yeast: an experimental organism for modern biology. Science 240, 1439–1443.

    Article  PubMed  CAS  Google Scholar 

  4. Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.

    Article  PubMed  CAS  Google Scholar 

  5. Sargent, R. G., Merrihew, R. V., Nairn, R., Adair, G., Meuth, M., and Wilson, J. H. (1996) Influence of a (GT)29 microsatellite sequence on homologous recombination in the hamster adenine phosphoribosyltransferase gene. Nucleic Acids Res. 24, 746–753.

    PubMed  CAS  Google Scholar 

  6. Bollag, R. J., Waldman, A. S., and Liskay, R. M. (1989) Homologous recombination in mammalian cells. Annu. Rev. Genet. 23, 199–225.

    Article  PubMed  CAS  Google Scholar 

  7. Roth, D. B. and Wilson, J. H. (1986) Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6, 4295–4304.

    PubMed  CAS  Google Scholar 

  8. Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  9. Vasquez, K. M. and Wilson, J. H. (1998) Triplex-directed modification of genes and genes activity. Trends Biochem. Sci. 23, 4–9.

    Article  PubMed  CAS  Google Scholar 

  10. Cooney, M., Czernuszewicz, G., Postel, E. H., Flint, S. J., and Hogan, M. E. (1988) Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 241, 456–459.

    Article  PubMed  CAS  Google Scholar 

  11. Beal, P. A. and Dervan, P. B. (1991) Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  12. Rajagopal, P. and Feigon, J. (1989) Triple-strand formation in the homopurine: homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4. Nature 339, 637–640.

    Article  PubMed  CAS  Google Scholar 

  13. Radhakrishnan, I. and Patel, D. J. (1994) DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry 33, 11405–11416.

    Article  PubMed  CAS  Google Scholar 

  14. Stein, C. A., Subasinghe, C., Shinozuka, K., and Cohen, J. S. (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 16, 3209–3221.

    Article  PubMed  CAS  Google Scholar 

  15. Tidd, D. M. and Warenius, H. M. (1989) Partial protection against serum nuclease degradation using terminal methylphosphonate groups. Br. J. Cancer 60, 343–350.

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  17. Vasquez, K. M., Wensel, T. G., Hogan, M. E., and Wilson, J. H. (1995) Highaffinity triple helix formation by synthetic oligonucleotides at a site within a selectable mammalian gene. Biochemistry 34, 7243–7251.

    Article  PubMed  CAS  Google Scholar 

  18. Shindo, H., Torigoe, H., and Sarai, A. (1993) Thermodynamic and kinetic studies of DNA triplex formation of an oligohomopyrimidine and a matched duplex by filter binding assay. Biochemistry 32, 8963–8969.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, J. S., Johnson, D. A., and Morgan, A. R. (1979) Complexes formed by (pyrimidine)n.(purine)n DNAs on lowering the pH are three-stranded. Nucleic Acids Res. 6, 3073–3091.

    Article  PubMed  CAS  Google Scholar 

  20. Vasquez, K. M., Wensel, T. G., Hogan, M. E., and Wilson, J. H. (1996) Highefficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene. Biochemistry 35, 10,712–10,719.

    Article  PubMed  CAS  Google Scholar 

  21. Pieles, U. and Englisch, U. (1989) Psoralen covalently linked to oligodeoxyribonucleotides: synthesis, sequence specific recognition of DNA and photo-crosslinking to pyrimidine residues of DNA. Nucleic Acids Res. 17, 285–299.

    Article  PubMed  CAS  Google Scholar 

  22. Sun, J. S., Francois, J. C., Montenay-Garestier, T., Saison-Behmoaras, T., Roig, V., Thuong, N. T., and Helene, C. (1989) Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates. Proc. Natl. Acad. Sci. USA 86, 9198–9202.

    Article  PubMed  CAS  Google Scholar 

  23. Young, S. L., Krawczyk, S. H., Matteucci, M. D., and Toole, J. J. (1991) Triple helix formation inhibits transcription elongation in vitro. Proc. Natl. Acad. Sci. USA 88, 10,023–10,026.

    Article  PubMed  CAS  Google Scholar 

  24. Cassidy, S. A., Strekowski, L., Wilson, W. D., and Fox, K. R. (1994) Effect of a triplex-binding ligand on parallel and antiparallel DNA triple helices using short unmodified and acridine-linked oligonucleotides. Biochemistry 33, 15,338–15,347.

    Article  PubMed  CAS  Google Scholar 

  25. Nelson, P. S., Sherman-Gold, R., and Leon, R (1989) New and versatile reagent for incorporating multiple primary aliphatic amines into synthetic oligonucleotides. Nucleic Acids Res. 17, 7179–7186.

    Article  PubMed  CAS  Google Scholar 

  26. Borreli, E., Heyman, R., Hsi, M., and Evans, R. M. (1988) Targeting of an inducible toxic phenotype in animal cells. Proc. Natl. Acad. Sci. USA 85, 7572–7576.

    Article  Google Scholar 

  27. Wang, G. and Glazer, P. M. (1995) Altered repair of targeted psoralen photoadducts in the context of an oligonucleotide-mediated triple helix. J. Biol. Chem. 270, 22,595–22,601.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, G., Levy, D. D., Seidman, M. M., and Glazer, P. M. (1995) Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol. Cell. Biol. 15, 1759–1768.

    PubMed  CAS  Google Scholar 

  29. Wang, G., Levy, D. D., Seidman, M. M., and Glazer, P. M. (1996) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271, 802–805.

    Article  PubMed  CAS  Google Scholar 

  30. Zendegui, J. G., Vasquez, K. M., Tinsley, J. H., Kessler, D. J., and Hogan, M. E. (1992) In vitro stability and kinetics of absorption and disposition of 3′phosphopropyl amine oligonucleotides. Nucleic Acids Res. 20, 307–314.

    Article  PubMed  CAS  Google Scholar 

  31. Merrihew, R. V., Sargent, R. G., and Wilson, J. H. (1995) Efficient modification of the APRT gene by FLP/FRT site-specific targeting. Somatic Cell Mol. Genet. 21, 299–307.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Vasquez, K.M., Wilson, J.H. (2000). Triplex-Directed Site-Specific Genome Modification. In: Kmiec, E.B. (eds) Gene Targeting Protocols. Methods in Molecular Biology™, vol 133. Humana Press. https://doi.org/10.1385/1-59259-215-5:183

Download citation

  • DOI: https://doi.org/10.1385/1-59259-215-5:183

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-360-3

  • Online ISBN: 978-1-59259-215-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics