Skip to main content

Nucleic Acid Transfer Using Cationic Lipids

  • Protocol
Gene Targeting Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 133))

  • 460 Accesses

Abstract

The use of cationic lipids or cationic polymers to mediate the transfer of nucleic acids into mammalian cells has become a widely applied technology in recent years. The principal reasons for this have been the ease with which the methodology can be applied to a wide range of cell types; the relatively low cytotoxicity compared to other techniques; the high efficiency of nucleic acid transfer in comparison with methods such as calcium phosphate or diethylaminoethyl-dextran-mediated transfection; and the potential application of these systems to human gene therapy. The use of positively charged lipid-based macromolecules to deliver nucleic acids makes use of the fact that DNA, RNA, and oligonucleotides carry a negative charge caused by the phosphate groups that form the backbone of these molecules. The electrostatic interaction between the negatively charged nucleic acid and the positively charged macromolecule induces a range of structural changes that vary, depending on the macro-molecule used. In general, however, the process results in condensation or compaction of the nucleic acid and physical association of the nucleic acid with the lipid. The interaction generates a complex that is more amenable to cellular uptake, protects sufficient nucleic acid molecules to allow trafficking to the nucleus, and, in at least some cases, may also facilitate transfer into the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capaccioli, S., Pasquale, G. D., Mini, E., Mazzei, T., and Quattrone, A. (1993) Cationic lipids improve antisense oligonucleotide uptake and prevent degradation in cultured cells and in human serum. Biochem. Biophys. Res. Comm. 197, 818–825.

    Article  PubMed  CAS  Google Scholar 

  2. Lewis, J. G., Lin, K.-Y., Kothavale, A., Flanagan, W. M., Matteucci, M. D., DePrince, R. B., et al. (1996) Serum-resistant cytofectin for delivery of antisense oligonucleotides and plasmid DNA. Proc. Natl. Acad. Sci. USA 93, 3176–3181.

    Article  PubMed  CAS  Google Scholar 

  3. Kronenwett, R., Steidi, U., Kirsch, M., Sczakiel, G., and Haas, R. (1998) Oligodeoxyribonucleotide uptake in primary human hematopoietic cells is enhanced by cationic lipids and depends on the hematopoietic cell subset. Blood 91, 852–862.

    PubMed  CAS  Google Scholar 

  4. Chen, M., Compton, S. T., Coviello, V. F., Green, E. D., and Ashlock, M. A. (1997) Transient gene expression from yeast artificial chromosome DNA in mammalian cells is enhanced by adenovirus. Nucleic Acids Res. 25, 4416–4418.

    Article  PubMed  CAS  Google Scholar 

  5. Ikeno, M., Grimes, B., Okazaki, T., Nakano, M., Saitoh, K., Hoshino, H., et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nature Biotechnol. 16, 431–439.

    Article  CAS  Google Scholar 

  6. Lu, D., Benjamin, R., Kim, M., Conry, R. M., and Curiel, D. T. (1994) Optimization of methods to achieve mRNA-mediated transfection of tumor cells in vitro and in vivo employing cationic liposome vectors. Cancer Gene Ther. 1, 245–252.

    PubMed  CAS  Google Scholar 

  7. Kariko, K., Kuo, A., Barnathan, E. S., and Langer, D. J. (1998) Phosphateenhanced transfection of cationic lipid-complexed mRNA and plasmid DNA. Biochim. Biophys. Acta 1369, 320–334.

    Article  PubMed  CAS  Google Scholar 

  8. Cole-Strauss, A., Yoon, K., Xiang, Y., Byrne, B. C., Rice, M. C., Gryn, J., Holloman, W. K., and Kmiec, E. B. (1996) Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 273, 1386–1389.

    Article  PubMed  CAS  Google Scholar 

  9. Kren, B. T., Bandyopadhyay, P., and Steer, C. J. (1998) In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nature Med. 4, 285–290.

    Article  PubMed  CAS  Google Scholar 

  10. Felgner, P. L., Barenholz, Y., Behr, J. P., Cheng, S. H., Cullis, P., Huang, L., et al. (1997) Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8, 511–512.

    Article  PubMed  CAS  Google Scholar 

  11. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.

    Article  PubMed  CAS  Google Scholar 

  12. Gao, X. and Huang, L. (1995) Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–722.

    PubMed  CAS  Google Scholar 

  13. Gao, X. (1997) Cationic lipid-based gene delivery: an update, in Gene Therapy for Diseases of the Lung (Brigham, K. L., ed.), Marcel Dekker, New York, pp. 99–112.

    Google Scholar 

  14. Gao, X. and Huang, L. (1991) Novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Comm. 179, 280–285.

    Article  PubMed  CAS  Google Scholar 

  15. Felgner, J. H., Kumar, R., Sridhar, C. N., Wheeler, C. J., Tsai, Y. J., Border, R., et al. (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561.

    PubMed  CAS  Google Scholar 

  16. Lee, E. R., Marshall, J., Siegel, C. S., Jiang, C., Yew, N. S., Nichols, M. R., et al. (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum. Gene Ther. 7, 1701–1717.

    Article  PubMed  CAS  Google Scholar 

  17. Wheeler, C., Felgner, P. L., Tsai, Y. J., Marshall, J., Sukhu, L., Doh, S. G., et al. (1996) Novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung. Proc. Natl. Acad. Sci. USA 93, 11,454–11,459.

    Article  PubMed  CAS  Google Scholar 

  18. Gershon, H., Ghirlando, R., Guttman, S. B., and Minsky, A. (1993) Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochem. 32, 7143–7151.

    Article  CAS  Google Scholar 

  19. Eastman, S., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H., and Scheule, R. K. (1997) Biophysical characterization of cationic lipid: DNA complexes. Biochim. Biophys. Acta 1325, 41–62.

    Article  PubMed  CAS  Google Scholar 

  20. Ferrari, M. E., Nguyan, C. M., Zelphati, O., Tsai, Y., and Felgner, P. L. (1998) Analytical methods for the characterization of cationic lipid-nucleic acid complexes. Hum. Gene Ther. 9, 341–351.

    Article  PubMed  CAS  Google Scholar 

  21. Felgner, P. L. and Rinegold, G. M. (1989) Cationic liposome mediated transfection. Nature 337, 387–388.

    Article  PubMed  CAS  Google Scholar 

  22. Gustafsson, J., Arvidson, G., Karlsson, G., and Almgren, M. (1995) Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim. Biophys. Acta 1235, 305–312.

    Article  PubMed  Google Scholar 

  23. Rädler, J., Koltover, I., Salditt, T., and Safinya, C. R. (1997) Structure of DNAcationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275, 810–81

    Article  PubMed  Google Scholar 

  24. Spector, M. S. and Schnur, J. M. (1997) DNA ordering on a lipid membrane. Science 275, 791–792.

    Article  PubMed  CAS  Google Scholar 

  25. Smith, J. G., Walzem, R. L., and German, J. B. (1993) Liposomes as agents of DNA transfer. Biochim. Biophys. Acta 1154, 327–340.

    PubMed  CAS  Google Scholar 

  26. Legendre, J. Y. and Szoka, F. C. (1992) Delivery of plasmid DNA into mammalian cell lines using pH sensitive liposomes: comparison with cationic liposomes. Pharm. Res. 9, 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou, X. and Huang, L. (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim. Biophys. Acta 1189, 195–203.

    Article  PubMed  CAS  Google Scholar 

  28. Wrobel, I. and Collins, D. (1995) Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim. Biophys. Acta 1235, 296–304.

    Article  PubMed  Google Scholar 

  29. Zabner, J., Fasbender, A. J., Moninger, T., Poellinger, K. A., and Welsh, M. J. (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270, 18,997–19,007.

    Article  PubMed  CAS  Google Scholar 

  30. Matsui, H., Johnson, L. G., Randell, S. H., and Boucher, R. C. (1997) Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J. Biol. Chem. 272, 1117–1126.

    Article  PubMed  CAS  Google Scholar 

  31. Caplen, N. J., Kinrade, E., Sorgi, F., Gao, X., Gruenert, D., Geddes, D., et al. (1995) In vitro liposome-mediated DNA transfection of epithelial cell lines using the cationic liposome DC-Chol/DOPE. Gene Ther. 2, 603–613.

    PubMed  CAS  Google Scholar 

  32. Fasbender, A. J., Zabner, J., and Welsh, M. J. (1995) Optimization of cationic lipid-mediated gene transfer to airway epithelia. Am. J. Physiol. 269 (Lung Cell. Mol. Physiol.), L45–L51.

    PubMed  CAS  Google Scholar 

  33. Eastman, S. J., Tousignant, J. D., Lukason, M. J., Murray, H., Siegel, C. S., Constantino, P., et al. (1997) Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid:DNA complexes. Hum. Gene Ther. 8, 313–322.

    Article  PubMed  CAS  Google Scholar 

  34. Liu, Y., Mounkes, L. C., Liggitt, H. D., Brown, C. S., Solodin, I., Heath, T. D., and Debs, R. J. (1997) Factors influencing the efficiency of cationic liposomemediated intravenous gene delivery. Nature Biotechnol. 15, 167–173.

    Article  CAS  Google Scholar 

  35. Caplen, N. J., Gao, X., Hayes, P., Elaswarapu, R., Fisher, G., Kinrade, E., et al. (1994) Gene therapy for cystic fibrosis in humans by liposome-mediated DNA transfer: the production of resources and the regulatory process. Gene Ther. 1, 139–147.

    PubMed  CAS  Google Scholar 

  36. Cotten, M., Baker, A., Saltik, M., Wagner, E., and Buschle, M. (1994) Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther. 1, 239–246.

    PubMed  CAS  Google Scholar 

  37. Cotten, M. and Saltik, M. (1997) Intracellular delivery of lipopolysaccharide during DNA transfection activates a lipid A-dependent cell death response that can be prevented by polymyxin B. Hum. Gene Ther. 8, 555–561.

    Article  PubMed  CAS  Google Scholar 

  38. Behr, J. P., Demeneix, B., Loeffler, J. P., and Mutul, J. P. (1989) Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA 86, 6982–6986.

    Article  PubMed  CAS  Google Scholar 

  39. Lasic, D. D. (1997) Liposomes in Gene Delivery. CRC, Boca Raton, FL.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Caplen, N.J. (2000). Nucleic Acid Transfer Using Cationic Lipids. In: Kmiec, E.B. (eds) Gene Targeting Protocols. Methods in Molecular Biology™, vol 133. Humana Press. https://doi.org/10.1385/1-59259-215-5:1

Download citation

  • DOI: https://doi.org/10.1385/1-59259-215-5:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-360-3

  • Online ISBN: 978-1-59259-215-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics