Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 115))

  • 2209 Accesses

Abstract

Since its inception in the 1940s, the technique of immunofluorescence microscopy has provided a sensitive, high-resolution method for determining the presence of, and distribution of, an antigen within a specimen. Fluorescent molecules, termed fluorochromes, can be conjugated directly to antibodies by covalent linkage, or coupled indirectly to antibodies via conjugation to proteins A and G or through an avidin-biotin bridge (see Chapters 6, 7, and 25). A fluorochrome coupled to an antibody or other probe may be termed a fluorophore; here, the term fluorochrome is used throughout. The basic features of immunofluorescence are straightforward, but a working knowledge of the commonly used fluorochromes is of value in obtaining maximum performance from immunofluorescence microscopy and flow cytometry. The discussion below focuses on fluorochromes commonly used for immunolabeling, and does not encompass fluorochromes that provide molecule- or organelle-specific labeling without the use of antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blakeslee, D. and Baines, M. G. (1976) Immunofluorescence using dichlorotriazinylaminofluorescein (DTAF). I. Preparation and fractionation of labelled IgG. J. Immunol. Methods 13, 305–320.

    Article  PubMed  CAS  Google Scholar 

  2. Hemmila, I. A. (1991) Applications of Fluorescence in Immunoassays. Wiley, New York.

    Google Scholar 

  3. Aubin, J. E. (1979) Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27,36–43.

    PubMed  CAS  Google Scholar 

  4. Benson, R. C., Meyer, R. A., Zaruba, M. E., and McKhann, G. M. (1979) Cellular autofluorescence—Is it due to flavins? J. Histochem. Cytochem. 27,44–48.

    PubMed  CAS  Google Scholar 

  5. Corsetti, J. P., Way, B. A., Sparks, C. E., and Sparks, J. D. (1992) Immunolocalization, quantitation and cellular heterogeneity of apolipoprotein B in rat hepatocytes. Hepatology 15,1117–1124.

    Article  PubMed  CAS  Google Scholar 

  6. Bacallao, R., Morgane, B., Stelzer, E. H. K., and DeMey, J. (1989) Guiding principles of specimen preservation for confocal fluorescence microscopy, in Handbook of Biological Confocal Microscopy (Pawley, J. B., ed.), Plenum, New York, pp. 197–205.

    Google Scholar 

  7. Wessendorf, M. W. and Brelje, T. C. (1992) Which fluorophore is brightest-A comparison of the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, Texas Red, and cyanine 3.18. Histochem. 98, 81–85.

    Article  CAS  Google Scholar 

  8. Haugland, R. P. (1990) Fluorescein substitutes for microscopy and imaging, in Optical Microscopy for Biology (Herman, B. and Jacobson, K., eds.), Wiley-Liss, New York, pp. 143–157.

    Google Scholar 

  9. Tsien, R. Y. and Waggoner, A. (1989) Fluorophores for confocal microscopy: photophysics and photochemistry, in Handbook of Biological Confocal Microscopy (Pawley, J. B., ed.), Plenum, New York, pp. 169–178.

    Google Scholar 

  10. Haugland, R. P. (1996) Handbook of Fluorescent Probes and Research Chemicals, 6th ed. (Spence, M. T. Z., ed.), Molecular Probes, Eugene, OR.

    Google Scholar 

  11. Kasten, F. H. (1989) The origins of modern fluorescence microscopy and fluorescent probes, in Cell Structure and Function by Microspectrofluorometry (Kohen, E. and Hirschberg, J. G. eds.), Academic, San Diego, pp. 3–50.

    Google Scholar 

  12. Titus, J. A., Haugland, R., Sharrow, S. O., and Segal, D. M. (1982) Texas Red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluormetric and fluorescence microscopic studies. J. Immunol. Methods 50, 193–204.

    Article  PubMed  CAS  Google Scholar 

  13. Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., and Waggoner, A. S. (1989) Cyanine dye labeling reagents containing isothiocyanate groups. Cytometry 10,11–19.

    Article  PubMed  CAS  Google Scholar 

  14. Southwick, P. L., Ernst, L. A., Tauriello, E. W., Parker, S. R., Murumdar, R. B., Mujumdar, S. R., Clever, H. A., and Waggoner, A. S. (1990) Cyanine dye labeling reagents-carboxymethylindocyanine succinimidyl esters. Cytometry 11,418–430.

    Google Scholar 

  15. Kornick, M. N. (1986) The use of phycobilliproteins as fluorescent labels in immunoassay.J. Immunol. Methods 92, 1–13.

    Article  Google Scholar 

  16. Oi, V. T., Glazer, A. N., and Stryer, L. (1982) Fluorescent phycobilliprotein conjugates for analyses of cells and molecules. J. Cell Biol. 2, 981–986.

    Article  Google Scholar 

  17. Pizzolo, G. and Chilosi, M. (1984) Double immunostaining of lymph node sections by monoclonal antibodies using phycoerythrin labeling and haptenated reagents. Am. J. Clin. Pathol. 82,44–47.

    PubMed  CAS  Google Scholar 

  18. Rothbarth, Ph. H, Tanke, H. J., Mul, N. A. J., Ploem, J. S., Vliegenthart, J. F. G., and Ballieux, R. E. (1978) Immunofluorescence studies with 4-acetamido-4′-isothiocyanatostilbene2,2′-disulphonic acid (SITS). J. Immunol. Methods 19,101–109.

    Article  PubMed  CAS  Google Scholar 

  19. Meister, B. and Hökfelt, T. (1988) Peptide-and transmitter-containing neurons in the mediobasal hypothalamus and their relation to GABAergic systems: possible roles in control of prolactin and growth hormone secretion. Synapse 2, 585–605.

    Article  PubMed  CAS  Google Scholar 

  20. Small, J. V., Zobeley, S., Rinnerthaler, G., and Faulstich, H. (1988) Coumarinphalloidin: a new actin probe permitting triple immunofluorescence microscopy of the cytoskeleton. J. Cell Sci. 89,21–24.

    PubMed  CAS  Google Scholar 

  21. Staines, W. A., Meister, B., Melander, T., Nagy, J. I., and Hokfelt, T. (1988) Three-color immunofluorescence histochemistry allowing triple labeling within a single section. J. Histochem. Cytochem. 36, 145–151.

    PubMed  CAS  Google Scholar 

  22. Wessendorf, M. W., Appel, N. M., Molitor, T. W., and Elde, R. P. (1990) A method for immunofluorescent demonstration of three coexisting neurotransmitters in rat brain and spinal cord, using the fluorophores fluorescein, lissamine rhodamine, and 7-amino-4-methylcoumarin-3-acetic acid. J. Histochem. Cytochem. 38,1859–1877.

    PubMed  CAS  Google Scholar 

  23. Whitaker, J. E., Haugland, R. P., Moore, P. C., Hewitt, P. C., Reese, M., and Haugland, R. P. (1991) Cascade blue derivatives: Water soluble, reactive, blue emission dyes evaluated as fluorescent labels and tracers. Analyt. Biochem. 198,119–130.

    Article  PubMed  CAS  Google Scholar 

  24. DeBiasio, R., Bright, G. R., Ernst, L. A., Waggoner, A. S., and Taylor, D. L. (1987) Five-parameter fluorescence imaging: Wound healing of living Swiss 3T3 cells. J. Cell Biol. 105, 1613–1622.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mullins, J.M. (1999). Overview of Fluorochromes. In: Javois, L.C. (eds) Immunocytochemical Methods and Protocols. Methods in Molecular Biology™, vol 115. Humana Press. https://doi.org/10.1385/1-59259-213-9:97

Download citation

  • DOI: https://doi.org/10.1385/1-59259-213-9:97

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-813-4

  • Online ISBN: 978-1-59259-213-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics