Skip to main content

Probing Chromatin Structure with Nuclease Sensitivity Assays

  • Protocol
  • 808 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 181))

Abstract

To further our understanding of genomic imprinting it will be essential to identify key control elements, and to investigate their regulation by both epigenetic modifications (such as DNA methylation) and trans-acting factors. So far, sequence elements that regulate parental allele-specific gene expression have been identified in a number of imprinted loci, either because of their differential DNA methylation or through functional studies in transgenic mice (1,2). A systematic search for allele-specific chromatin features constitutes an alternative strategy to identify elements that regulate imprinting. The validity of such an in vivo chromatin approach derives from the fact that in several known imprinting control-elements, a specialized organization of chromatin characterized by nuclease hypersensitivity is present on only one of the two parental chromosome (3). For example, the differentially methylated 5′-portion of the human SNRPN gene-a sequence element that controls imprinting in the Prader-Willi and Angelman syndromes’ domain on chromosome 15q11-q13-has strong DNase-I hypersensitive sites on the unmethylated paternal chromosome (4). A differentially methylated region that regulates the imprinting of H19 and that of the neighboring insulin-like growth factor-2 gene on mouse chromosome 7 was also found to have parental chromosomespecific hypersensitive sites (5,6). The precise nature of the allelic nuclease hypersensitivity in these and other imprinted loci remains to be determined in more detail, for example, by applying complementary chromatin methodologies (7,8). However, it is comMonly observed that a nuclease hypersensitive site corresponds to a small region where nucleosomes are absent or partially disrupted.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Constáncia, M., Pickard, B., Kelsey, G., and Reik, W. (1998) Imprinting mechanisms. Genet. Res. 8, 881–900.

    Google Scholar 

  2. Brannan, C. I. and Bartolomei, M. S. (1999) Mechanisms of genomic imprinting. Curr. Opin. Genet. Dev. 9, 164–1

    Article  PubMed  CAS  Google Scholar 

  3. Feil, R. and Khosla, S. (1999) Genomic imprinting in mamMals: an interplay between chromatin and DNA methylation? Trends Genet. 15, 431–435.

    Article  PubMed  CAS  Google Scholar 

  4. Schweizer, J., Zynger, D., and Francke, U. (1999) In vivo nuclease hypersensitivity studies reveal multiple sites of parental-origin-dependent differential chromatin conformation in the 150 kb SNRPN transcription unit. Hum. Mol. Genet. 8, 555–5

    Article  PubMed  CAS  Google Scholar 

  5. Hark, A. T. and Tilghman, S. M. (1998) Chromatin conformation of the H19 epigenetic mark. Hum. Mol. Genet. 7, 1979–19

    Article  PubMed  CAS  Google Scholar 

  6. Khosla, S., Aitchison, A., Gregory, R., Allen, N. D., and Feil, R. (1999) Parental allele-specific chromatin configuration in a boundary-imprinting-control element upstream of the mouse H19 gene. Mol. Cell. Biol. 19, 2556–25

    PubMed  CAS  Google Scholar 

  7. Zaret, K. S. (1997) In vivo footprinting analysis of protein-nucleic acid interactions. Methods 11, 149–2

    Article  PubMed  CAS  Google Scholar 

  8. Szabó, P. E., Pfeifer, G. P., and Mann, J. R. (1998) Characterization of novel parent-specific epigenetic modifications upstream of the imprinted H19 gene. Mol. Cell. Biol. 18, 6767–67

    PubMed  Google Scholar 

  9. Weintraub, H. and Groudine, M. (1976) Chromosomal subunits in active genes have an altered conformation. Science 193, 848–8

    Article  PubMed  CAS  Google Scholar 

  10. Gross, D. S. and Garrard, W. T. (1988) Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159–1

    Article  PubMed  CAS  Google Scholar 

  11. Boyes, J. and Felsenfeld, G. (1996) Tissue-specific factors additively increase the probability of the all-or-none formation of a hypersensitive site. EMBO J. 15, 2496–25

    PubMed  CAS  Google Scholar 

  12. Hebbes, T. R., Clayton, A. L., Thorne, A. W., and Crane-Robinson, C. (1994) Core histone hyperacetylation co-maps with generalized DNase-I sensitivity in the chicken α-globin chromosomal domain. EMBO J. 13, 1823–18

    PubMed  CAS  Google Scholar 

  13. Feil, R., Boyano, M. D., Allen, N. D.m and Kelsey, G. (1997) Parental chromosome-specific chromatin conformation in the imprinted U2af1-rs1 gene in the mouse. J. Biol. Chem. 272, 20,893–20,9

    Article  PubMed  CAS  Google Scholar 

  14. Feil, R. and Kelsey, G. (1997) Insights from model systems. Genomic imprinting: a chromatin connection. Am. J. Hum. Genet. 61, 1213–12

    Article  PubMed  CAS  Google Scholar 

  15. Wu, C. (1989) Analysis of hypersensitive sites in chromatin. Methods Enzymol. 170, 269–2

    Article  PubMed  CAS  Google Scholar 

  16. Bellard, M., Dretzen, G., Giangrande, A., and Ramain, P. (1989) Nuclease digestion of transcriptionally active chromatin. Methods Enzymol. 170, 317–3

    Article  PubMed  CAS  Google Scholar 

  17. Sasaki, H., Jones, P. A., Chaillet, J. R., Ferguson-Smith, A. C., Barton, S. C., Reik, W., and Surani, M. A. (1992) Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 6, 1843–18

    Article  PubMed  CAS  Google Scholar 

  18. Feil, R., Handel, M-A., Allen, N. D., and Reik, W. (1995) Chromatin structure and imprinting: developmental control of DNase-I sensitivity in the mouse insulin-like growth factor 2 gene. Dev. Genet. 17, 240–2

    Article  PubMed  CAS  Google Scholar 

  19. Stewart, A. F., Reik, A., and Schütz, G. (1991) A simpler and better method to cleave chromatin with Dnase-I for hypersensitive site analyses. Nucleic Acids Res. 19, 31

    Article  PubMed  CAS  Google Scholar 

  20. Dean, W., Bowden, L., Aitchison, A., Klose, J., Moore, T., Meneses, J. J., Reik, W., and Feil, R. (1998) Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125, 2273–22

    PubMed  CAS  Google Scholar 

  21. Bartolomei, M. S., Webber, A. L., Brunkow, M. E., and Tilghman, S. M. (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663–16

    Article  PubMed  CAS  Google Scholar 

  22. Kramer, J. A., McCarrey, J. R., Djakiew, D., and Krawetz, S. A. (1998) Differentiation: the selective potentiation of chromatin domains. Development 125, 4749–47

    PubMed  CAS  Google Scholar 

  23. McCabe, V., Formstone, E. J., O’Neill, L. P., Turner, B. M., and Brockdorff, N. (1999) Chromatin structure analysis of the mouse Xist gene. Proc. Natl. Acad. Sci. USA 96, 7155–71

    Article  PubMed  CAS  Google Scholar 

  24. Gregory, R. I. and Feil, R. (1999) Analysis of chromatin in limited numbers of cells: a PCR-SSCP based assay of allele-specific nuclease sensitivity. Nucleic Acids Res. 27, e32i–

    Article  Google Scholar 

  25. Orita M., Iwahana, H., Kanazawa, K., and Sekiya, T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–27

    Article  PubMed  CAS  Google Scholar 

  26. Orita, M., Suzuki, Y, Sekiya, T., and Hayashi, K. (1989) A rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–8

    Article  PubMed  CAS  Google Scholar 

  27. Warren, W., Hovig, E., Smith-Sorensen, B., Borresen, A-L., Fujimura, F. K., Liu, Q., Feng, J., and SomMer, S. S. (1997) Detection of mutations by singlestrand conformation polymorphism (SSCP) analysis and SSCP-hybrid methods, in Current Protocols in Human Genetics (Boyle, A. L., ed.), Wiley, New York, pp. 7.41–7.4.23.

    Google Scholar 

  28. Cartwright, I. L. and Elgin, S. C. R. (1989) Nonenzymatic cleavage of chromatin. Methods Enzym. 170, 359–3

    Article  CAS  Google Scholar 

  29. Drew, H. R. (1984) Structural specificities of five comMonly used DNA nucleases. J. Mol. Biol. 176, 535–5

    Article  PubMed  CAS  Google Scholar 

  30. Erlich, H. A. (1989) PCR Technology, Stockton, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gregory, R.I., Khosla, S., Feil, R. (2002). Probing Chromatin Structure with Nuclease Sensitivity Assays. In: Ward, A. (eds) Genomic Imprinting. Methods in Molecular Biology™, vol 181. Humana Press. https://doi.org/10.1385/1-59259-211-2:269

Download citation

  • DOI: https://doi.org/10.1385/1-59259-211-2:269

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-741-0

  • Online ISBN: 978-1-59259-211-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics