Skip to main content

A PCR-Based Method for Studying DNA Methylation

  • Protocol
Genomic Imprinting

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 181))

  • 776 Accesses

Abstract

DNA methylation is a mechanism for regulation of gene expression in animals (1-3). The addition of a methyl group at the 5-position of cytosine bases occurs exclusively at CpG dinucleotides. CpG dinucleotides in the vertebrate genome are underrepresented and amount to 1% of the genome (4). However, in some regions of the genome, CpG residues amount to 6% or more of the dinucleotides in the genome. These regions, known as CpG islands, are usually associated with the promoter regions of housekeeping genes and, in contrast to CpGs throughout the genome, are unmethylated (5,6). Methylation of CpG islands occurs only in silenced genes on the inactive X chromosome and in parentally imprinted genes (7). In addition, CpG islands may become methylated upon oncogenic transformation. These alterations in the methylation profile are correlated with silencing of tumor suppressor genes such as p15, p16, Rb, VHL, e-cadherin, ER, and HIC1 (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cedar, H. (1988) DNA methylation and gene activity. Cell 53, 3–4.

    Article  PubMed  CAS  Google Scholar 

  2. Doerfler, W. (1983) DNA methylation and gene activity. Annu. Rev. Biochem. 52, 93–124.

    Article  PubMed  CAS  Google Scholar 

  3. Siegfried, Z. and Cedar, H. (1997) DNA methylation: a molecular lock. Curr. Biol. 7, 305–307.

    Article  Google Scholar 

  4. Schorderer, D. F. and Gartler, S. M. (1992) Analysis of CpG suppression in methylated and nonmethylated species. Proc. Natl. Acad. Sci. USA 89, 957–961.

    Article  Google Scholar 

  5. Bird, A. P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  6. Eden, S. and Cedar, H. (1994) Role of DNA methylation in the regulation of transcription. Curr. Opin. Genet. Dev. 4, 255–259.

    Article  PubMed  CAS  Google Scholar 

  7. Li, E., Beard, C., and Jaenisch, R. (1993) Role for DNA methylation in genomic imprinting. Nature 366, 362–365.

    Article  PubMed  CAS  Google Scholar 

  8. Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M., and Issa, J. P. (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia, in Advances In Cancer Research (Vandewoude, G. and Klein, G., eds.), Academic, San Diego, CA, pp. 141–196.

    Google Scholar 

  9. Brandeis, M., Kafri, T., Ariel, M., Chaillet, J. R., McCarrey, J., Razin, A., and Cedar, H. (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677.

    PubMed  CAS  Google Scholar 

  10. Razin, A. and Cedar, H. (1994) DNA methylation and genomic imprinting. Cell 77, 473–476.

    Article  PubMed  CAS  Google Scholar 

  11. Ariel, M., Robinson, E., McCarrey, J. R., and Cedar, H. (1995) Gamete-specific methylation imprints on the Xist gene. Nature Genet. 9, 312–315.

    Article  PubMed  CAS  Google Scholar 

  12. Monk, M., Boubelik, M., and Lehnert, S. (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382.

    PubMed  CAS  Google Scholar 

  13. Kafri, T., Ariel, M., Brandeis, M., Shemer, R., Urven, L., McCarrey, J., Cedar, H., and Razin, A. (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev. 6, 705–714.

    Article  PubMed  CAS  Google Scholar 

  14. Brandeis, M., Ariel, M., and Cedar, H. (1993) Dynamics of DNA methylation during development. BioEssays 15, 1–5.

    Article  Google Scholar 

  15. Shemer, R., Kafri, T., O’Connell, A., Eisenberg, S., Breslow, J. L., and A., R. (1991) Methylation changes in the apo AI gene during embryonic development of the mouse. Proc. Natl. Acad. Sci. USA 88, 10,300–10,304.

    Article  Google Scholar 

  16. Kubota, T., Nonoyama, S., Tonoki, H., Masuno, M., Imaizumi, K., Kojima, M., Wakui, K., Shimadzu, M., and Fukushima, Y. (1999) A new assay for the analysis of X-chromosome inactivation based on methylation-specific PCR. Hum. Genet. 104, 49–55.

    Article  PubMed  CAS  Google Scholar 

  17. Willard, H. F. (1995) The sex chromosomes and X chromosome inactivation, in The Metabolic and Molecular Bases of Inherited Diseases (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 718–737.

    Google Scholar 

  18. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

  19. Bird, A. P. (1978) Use of restriction enzyme to study eukaryotic DNA methylation. II. The symmetry of methylation sites supports semiconservative copying of the methylation pattern. J. Mol. Biol. 118, 49–60.

    Article  PubMed  CAS  Google Scholar 

  20. Maxam, A. M. and Gilbert, W. (1980) Sequencing and labeling DNA with basespecific chemical cleavages. Meth. Enzymol. 65, 499.

    Article  PubMed  CAS  Google Scholar 

  21. Saluz, H. P. and Jost, J. P. (1993) Major techniques to study DNA methylation, in DNA Methylation: Molecular Biology and Biological Signfi cance (Jost, J. P. and Saluz, H. P., eds.), Burkhausen-Verlag, Basil, pp. 11–26.

    Google Scholar 

  22. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831.

    Article  PubMed  CAS  Google Scholar 

  23. Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997.

    Article  PubMed  CAS  Google Scholar 

  24. Singer-Sam, J., LeBon, J. M., Tanguay, R. L., and Riggs, A. D. (1990) A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucl. Acids Res. 18, 687–692.

    Article  PubMed  CAS  Google Scholar 

  25. Singer-Sam, J., Yang, T. P., Mori, N., Tanguay, R. L., Le Bon, J. M., Flores, J. C., and Riggs, A. D. (1990) DNA methylation in the 5′ region of the mouse PGK-1 gene and a quantitative PCR assay for methylation, in Nucleic Acid Methylation (Clawson, G., Willis, D., Weissbach, A., and Jones, P., eds.), Liss, New York, pp. 285–298.

    Google Scholar 

  26. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Methylation specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826.

    Article  PubMed  CAS  Google Scholar 

  27. Herman, J. G., Umar, A., Polyak, K., Graff, J. R., Ahuja, N., Issa, J.-P., J., Markowitz, S., Willson, J. K. V., Hamilton, S. R., Kinzler, K. W., Kane, M. F., Kolodner, R. D., Vogelstein, B., Kunkel, T. A., and Baylin, S. T. (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectral carcinoma. Proc. Natl. Acad. Sci. USA 95, 6870–6875.

    Article  PubMed  CAS  Google Scholar 

  28. Kubota, T., Das, S., Christian, S. L., Bayling, S. B., Herman, J. G., and Ledbetter, D. H. (1997) Methylation-specific PCR simplifies imprinting analysis. Nature Genet. 16, 16–17.

    PubMed  CAS  Google Scholar 

  29. Shibata, H., Ueda, T., Kamiya, M., Yoshiki, A., Kusakabe, M., Plass, C., Held, W. A., Sunahara, S., Katsuki, M., Muramatsu, M., and Hayashizaki, Y. (1997) An oocyte-specific methylation imprint center in the mouse U2afbp-rs/U2af1-rs1 gene marks the establishment of allele-specific methylation during preimplantation development. Genomics 44, 171–17

    Article  PubMed  CAS  Google Scholar 

  30. Stoger, R., Kubicka, P., Liu, C.-G., Kafri, T., Razin, A., Cedar, H., and Barlow, D. P. (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71.

    Article  PubMed  CAS  Google Scholar 

  31. Glenn, C. C., Porter, K. A., Jong, M. T. C., Nicholls, R. D., and Driscoll, D. J. (1993) Functional imprinting and epigenetic modification of the human SNRPN gene. Hum. Mol. Genet. 2, 2001–2002.

    Article  PubMed  CAS  Google Scholar 

  32. Reis, A., Dittrich, B., Greger, V., Buiting, K., Lalande, M., Gillessen-Kaesbach, G., Anvret, M., and Horsthemke, B. (1994) Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am. J. Hum. Genet. 54, 741–747.

    PubMed  CAS  Google Scholar 

  33. Chotai, K. A. and Payne, S. J. (1998) A rapid, PCR based test for differential molecular diagnosis of Prader-Willi Angelman syndromes. J. Med. Genet. 35, 472–475.

    Article  PubMed  CAS  Google Scholar 

  34. Yu, Y., Xu, F., Peng, H., Fang, X., Zhao, S., Li, Y., Cuevas, B., Kuo, W.-L., Gray, J. W., Siciliano, M., Mills, G. B., and Bast, R. C., Jr. (1999) NOEY2 (ARhi), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc. Natl. Acad. Sci. USA 96, 214–219.

    Article  PubMed  CAS  Google Scholar 

  35. Allen, R. C., Zogbi, H. Y., Moseley, A. B., Rosenblatt, H. M., and Belmont, J. W. (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am. J. Hum. Genet. 51, 1229–1239.

    PubMed  CAS  Google Scholar 

  36. Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218.

    Article  PubMed  CAS  Google Scholar 

  37. Kohno, T., Kawanishi, M., Inazawa, J., and Yokota, J. (1998) Identification of CpG islands hypermethylated in human lung cancer by the arbitrarily primed-PCR method. Hum. Genet. 102, 258–264.

    Article  PubMed  CAS  Google Scholar 

  38. Gonzalgo, M. L., Liang, G., Spruck III, C. H., Zingg, J.-M., Rideout, W. M. III, and Jones, P. A. (1997) Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res. 57, 594–599.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ariel, M. (2002). A PCR-Based Method for Studying DNA Methylation. In: Ward, A. (eds) Genomic Imprinting. Methods in Molecular Biology™, vol 181. Humana Press. https://doi.org/10.1385/1-59259-211-2:205

Download citation

  • DOI: https://doi.org/10.1385/1-59259-211-2:205

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-741-0

  • Online ISBN: 978-1-59259-211-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics