Skip to main content

Three-Hybrid Screens for RNA-Binding Proteins

Proteins Binding 3′ End of Histone mRNA

  • Protocol
Two-Hybrid Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 177))

  • 1370 Accesses

Abstract

In metazoans, replication-dependent histone mRNAs, unlike all other mRNAs, are not polyadenylated but instead terminate with a unique, highly conserved sequence containing a 6-bp stem and a 4-base loop (1). This relatively short, 26-nucleotide sequence has multiple functions in metabolism of all replication-dependent histone mRNAs, including their nuclear export (2,3) and localization to polyribosomes (4,5), as well as regulation of their half-life in the cytoplasm (6). In metabolism of all other mRNAs, these functions are mediated by the poly(A) tail. Additionally, the histone stem-loop sequence is required for efficient 3′ end cleavage of replication-dependent histone pre-mRNAs, leading to the formation of mature histone mRNAs (7,8). Critical features of the 16-nucleotide stem-loop structure and the 5-nucleotide flanking sequences are shown in Fig. 1 A. The two GC base pairs at the base of the stem and the UA base pair at the top of the stem are invariant. Moreover, there are virtually always uridines in the first and third nucleotides of the loop. The only known exception is the loop of Caenorhabditis elegans histone mRNA, which in the first position contains cytidine rather than uridine (9). Both flanking sequences contain mostly adenines and cytidines, with CCAAA consensus sequence on the 5′ side and ACCA or ACCCA the consensus on the 3′ side.

The last 26 nucleotides of replication-dependent histone mRNAs are recognized by the SLBP. (A) Consensus sequence for the 16-nucleotide stem-loop structure and the 5-nucleotide flanking regions at the 3′ end of histone mRNAs. The invariant nucleotides are boxed. (B) The 3′ end of the mouse H2a-614 histone mRNA and the reverse-stem mutant (RS) unable to bind SLBP. Altered nucleotides are boxed. (C) Binding of SLBP from the nuclear extract of the mouse myeloma cells to the radiolabeled RNA containing the H2a -614 wild-type stem-loop sequence, as detected by mobility shift assay. A slowly migrating complex of SLBP and the RNA probe (lane 2) can be competed by 50-fold excess of the cold wild-type RNA (lane 3) but not by a 1000-fold excess of the RS mutant, which is unable to bind SLBP (lane 4). The probe is shown in lane 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dominski, Z. and Marzluff, W. F. (1999) Formation of the 3′ end of histone mRNA. Gene 239, 1–14.

    Article  PubMed  CAS  Google Scholar 

  2. Williams, A. S., Ingledue, T. C., Kay, B. K., and Marzluff, W. F. (1994) Changes in the stem-loop at the 3′ terminus of histone mRNA affects its nucleocytoplasmic transport and cytoplasmic regulation. Nucleic Acids Res. 22, 4660–4666.

    Article  PubMed  CAS  Google Scholar 

  3. Eckner, R., Ellmeier, W., and Birnstiel, M. L. (1991) Mature mRNA 3′ end formation stimulates RNA export from the nucleus. EMBO J. 10, 3513–3522.

    PubMed  CAS  Google Scholar 

  4. Gallie, D. R., Lewis, N. J., and Marzluff, W. F. (1996) The histone 3′-terminal stem-loop is necessary for translation in Chinese hamster ovary cells. Nucleic Acids Res. 24, 1954–1962.

    Article  PubMed  CAS  Google Scholar 

  5. Sun, J.-H., Pilch, D. R., and Marzluff, W. F. (1992) The histone mRNA 3′ end is required for localization of histone mRNA to polyribosomes. Nucleic Acids Res. 20, 6057–6066.

    Article  PubMed  CAS  Google Scholar 

  6. Pandey, N. B. and Marzluff, W. F. (1987) The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol. 7, 4557–4559.

    PubMed  CAS  Google Scholar 

  7. Vasserot, A. P., Schaufele, F. J., and Birnstiel, M. L. (1989) Conserved terminal hairpin sequences of histone mRNA precursors are not involved in duplex formation with the U7 RNA but act as a target site for a distinct processing factor. Proc. Natl. Acad. Sci. USA 86, 4345–4349.

    Article  PubMed  CAS  Google Scholar 

  8. Pandey, N. B., Williams, A. S., Sun, J.-H., Brown, V. D., Bond, U., and Marzluff, W. F. (1994) Point mutations in the stem-loop at the 3′ end of mouse histone mRNA reduce expression by reducing the efficiency of 3′ end formation. Mol. Cell. Biol. 14, 1709–1720.

    PubMed  CAS  Google Scholar 

  9. Roberts, S. B., Emmons, S. W., and Childs, G. (1989) Nucleotide sequences of Caenorhabditis elegans core histone genes. Genes for different histone classes share common flanking sequence elements. J. Mol. Biol. 206, 567–577.

    Article  PubMed  CAS  Google Scholar 

  10. Pandey, N. B., Sun, J.-H., and Marzluff, W. F. (1991) Different complexes are formed on the 3′ end of histone mRNA in nuclear and polysomal extracts. Nucleic Acids Res. 19, 5653–5659.

    Article  PubMed  CAS  Google Scholar 

  11. Hanson, R. J., Sun, J.-H., Willis, D. G., and Marzluff, W. F. (1996) Efficient extraction and partial purification of the polyribosomal-associated stem-loop binding protein bound to the 3′ end of histone mRNA. Biochemistry 35, 2146–2156.

    Article  PubMed  CAS  Google Scholar 

  12. Dominski, Z., Sumerel, J., Hanson, R. J., and Marzluff, W. F. (1995) The polyribosomal protein bound to the 3′ end of histone mRNA can function in histone pre-mRNA processing. RNA 1, 915–923.

    PubMed  CAS  Google Scholar 

  13. Williams, A. S. and Marzluff, W. F. (1995) The sequence of the stem and flanking sequences at the 3′ end of histone mRNA are critical determinants for the binding of the stem-loop binding protein. Nucleic Acids Res. 23, 654–662.

    Article  PubMed  CAS  Google Scholar 

  14. Draper, D. E. (1995) Protein-RNA recognition. Annu. Rev. Biochem. 64, 593–620.

    Article  PubMed  CAS  Google Scholar 

  15. Draper, D. E. and Reynaldo, L. P. (1999) RNA binding strategies of ribosomal proteins. Nucleic Acids Res. 27, 381–388.

    Article  PubMed  CAS  Google Scholar 

  16. Gick, O., Krämer, A., Keller, W., and Birnstiel, M. L. (1986) Generation of histone mRNA 3′ ends by endonucleolytic cleavage of the pre-mRNA in a snRNP-dependent in vitro reaction. EMBO J. 5, 1319–1326.

    PubMed  CAS  Google Scholar 

  17. Scharl, E. C. and Steitz, J. A. (1994) The site of 3′ end formation of histone messenger RNA is a fixed distance from the downstream element recognized by the U7 snRNP. EMBO J. 13, 2432–2440.

    PubMed  CAS  Google Scholar 

  18. Streit, A., Koning, T. W., Soldati, D., Melin, L., and Schümperli, D. (1993) Variable effects of the conserved RNA hairpin element upon 3′ end processing of histone pre-mRNA in vitro. Nucleic Acids Res. 21, 1569–1575.

    Article  PubMed  CAS  Google Scholar 

  19. Cotten, M., Gick, O., Vasserot, A., Schaffner, G., and Birnstiel, M. L. (1988) Specific contacts between mammalian U7 snRNA and histone precursor RNA are indispensable for the in vitro RNA processing reaction. EMBO J. 7, 801–808.

    PubMed  CAS  Google Scholar 

  20. Bond, U. M., Yario, T. A., and Steitz, J. A. (1991) Multiple processing-defective mutations in a mammalian histone premessenger RNA are suppressed by compensatory changes in U7 RNA both in vivo and in vitro. Genes Dev. 5, 1709–1722.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, H. O., Tabiti, K., Schaffner, G., Soldati, D., Albrecht, U., and Birnstiel, M. L. (1991) Two-step affinity purification of U7 small nuclear ribonucleoprotein particles using complementary biotinylated 2′-O-methyl oligoribonucleotides. Proc. Natl. Acad. Sci. USA 88, 9784–9788.

    Article  PubMed  CAS  Google Scholar 

  22. Stefanovic, B., Hackl, W., Lührmann, R., and Schümperli, D. (1995) Assembly, nuclear import and function of U7 snRNPs studied by microinjection of synthetic U7 RNA into Xenopus oocytes. Nucleic Acids Res. 23, 3141–3151.

    Article  PubMed  CAS  Google Scholar 

  23. Gick, O., Krämer, A., Vasserot, A., and Birnstiel, M. L. (1987) Heat-labile regulatory factor is required for 3′ processing of histone precursor mRNAs. Proc. Natl. Acad. Sci. USA 84, 8937–8940.

    Article  PubMed  CAS  Google Scholar 

  24. Harris, M. E., Böhni, R., Schneiderman, M. H., Ramamurthy, L., Schümperli, D., and Marzluff, W. F. (1991) Regulation of histone mRNA in the unperturbed cell cycle: Evidence suggesting control at two posttranscriptional steps. Mol. Cell. Biol. 11, 2416–2424.

    PubMed  CAS  Google Scholar 

  25. Stauber, C. and Schümperli, D. (1988) 3′ processing of pre-mRNA plays a major role in proliferation-dependent regulation of histone gene expression. Nucleic Acids Res. 16, 9399–9413.

    Article  PubMed  CAS  Google Scholar 

  26. Sittman, D. B., Graves, R. A., and Marzluff, W. F. (1983) Histone mRNA concentrations are regulated at the level of transcription and mRNA degradation. Proc. Natl. Acad. Sci. USA 80, 1849–1853.

    Article  PubMed  CAS  Google Scholar 

  27. Osley, M. A. (1991) The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60, 827–861.

    Article  PubMed  CAS  Google Scholar 

  28. Schaller, A., Martin, F., and Müller, B. (1997) Characterization of the calf thymus hairpin-binding factor involved in histone pre-mRNA 3′ end processing. J. Biol. Chem. 272, 10,435–10,441.

    Article  PubMed  CAS  Google Scholar 

  29. SenGupta, D. J., Zhang, B. L., Kraemer, B., Prochart, P., Fields, S., and Wickens, M. (1996) A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. USA 93, 8496–8501.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, Z.-F., Whitfield, M. L., Ingledue, T. I., Dominski, Z., and Marzluff, W. F. (1996) The protein which binds the 3′ end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev. 10, 3028–3040.

    Article  PubMed  CAS  Google Scholar 

  31. Martin, F., Schaller, A., Eglite, S., Schümperli, D., and Müller, B. (1997) The gene for histone RNA hairpin binding protein is located on human chromosome 4 and encodes a novel type of RNA binding protein. EMBO J. 16, 769–778.

    Article  PubMed  CAS  Google Scholar 

  32. Good, P. D. and Engelke, D. R. (1994) Yeast expression vectors using RNA polymerase III promoters. Gene 151, 209–214.

    Article  PubMed  CAS  Google Scholar 

  33. Gietz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425–1425.

    Article  PubMed  CAS  Google Scholar 

  34. Putz, U., Skehel, P., and Kuhl, D. (1996) A tri-hybrid system for the analysis and detection of RNA-protein interactions. Nucleic Acids Res. 24, 4838–4840.

    Article  PubMed  CAS  Google Scholar 

  35. Bacharach, E. and Goff, S. P. (1998) Binding of the human immunodeficiency virus type 1 Gag protein to the viral RNA encapsidation signal in the yeast three-hybrid system. J. Virol. 72, 6944–6949.

    PubMed  CAS  Google Scholar 

  36. Fewell, S. W. and Woolford, J. L. Jr. (1999) Ribosomal protein s14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B Pre-mRNA and to 18S rRNA. Mol. Cell. Biol. 19, 826–834.

    PubMed  CAS  Google Scholar 

  37. SenGupta, D. J., Wickens, M., and Fields, S. (1999) Identification of RNAs that bind to a specific protein using the yeast three-hybrid system. RNA 5, 596–601.

    Article  PubMed  CAS  Google Scholar 

  38. Marzluff, W. F., Whitfield, M. L., Dominski, Z., and Wang, Z.-F. (1997) Identification of the protein that interacts with the 3′ end of histone mRNA, in mRNA Formation and Function (Richter, J. D., ed.), Academic, New York.

    Google Scholar 

  39. Dominski, Z., Zheng, L.-X., Sanchez, R., and Marzluff, W. F. (1999) The stem-loop binding protein facilitates 3′ end formation by stabilizing U7 snRNP binding to the histone pre-mRNA. Mol. Cell. Biol. 19, 3561–3570.

    PubMed  CAS  Google Scholar 

  40. Wang, Z.-F., Ingledue, T. C., Dominski, Z., Sanchez, R., and Marzluff, W. F. (1999) Two Xenopus proteins that bind the 3′ end of histone mRNA: implications for translational control of histone synthesis during oogenesis. Mol. Cell. Biol. 19, 835–845.

    PubMed  CAS  Google Scholar 

  41. Zhang, B. L., Gallegos, M., Puoti, A., Durkin, E., Fields, S., Kimble, J., and Wickens, M. P. (1997) A conserved RNA-binding protein that regulates sexual fates in the C-elegans hermaphrodite germ line. Nature 390, 477–484.

    Article  PubMed  CAS  Google Scholar 

  42. Jan, E., Motzny, C. K., Graves, L. E., and Goodwin, E. B. (1999) The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J. 18, 258–269.

    Article  PubMed  CAS  Google Scholar 

  43. Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582.

    Article  PubMed  CAS  Google Scholar 

  44. Tarun, S. Z. Jr. and Sachs, A. B. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168–7177.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Dominski, Z., Marzluff, W.F. (2001). Three-Hybrid Screens for RNA-Binding Proteins. In: MacDonald, P.N. (eds) Two-Hybrid Systems. Methods in Molecular Biology, vol 177. Humana Press. https://doi.org/10.1385/1-59259-210-4:291

Download citation

  • DOI: https://doi.org/10.1385/1-59259-210-4:291

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-832-5

  • Online ISBN: 978-1-59259-210-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics