Skip to main content

One-Hybrid Systems f hor Detecting Protein-DNA Interactions

  • Protocol
Two-Hybrid Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 177))

Abstract

The yeast two-hybrid assay has proven useful for detecting protein-protein interactions. A variation on the theme can be used for finding proteins that interact with a particular DNA sequence. The one-hybrid assay, so far carried out only in Saccharomyces cerevisiae, in its simplest form (Fig. 1) consists of a DNA sequence of interest placed upstream of a reporter gene. The reporter gene can be either on a plasmid (1) or integrated into the chromosome (2). The protein or library being tested is cloned into a vector that expresses that protein fused to a transcription activation domain (TAD), the equivalent of the prey protein in a two-hybrid assay. This hybrid protein is expressed in the strain carrying the reporter gene. If the protein is able to interact with the sequence of interest, by either binding directly to the DNA or indirectly via interaction with a DNA-binding protein, transcription of the reporter gene is activated.

A generic one-hybrid assay. The DNA sequence of interest is placed upstream of a reporter gene with a minimal promoter, either on a plasmid or integrated into a chromosome. A hybrid protein consisting of a TAD fused to a protein that interacts with the target site is able to activate transcription of the reporter gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, M. M. and Reed, R. R. (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121–126.

    Article  PubMed  CAS  Google Scholar 

  2. Li, J. J. and Herskowitz, I. (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  3. Bourns, B. D., Alexander, M. K., Smith, A. M., and Zakian, V. A. (1998) Sir proteins, Rif proteins and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18, 5600–5608.

    PubMed  CAS  Google Scholar 

  4. Ortiz, J., Stemmann, O., Rank, S., and Lechner, J. (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13, 1140–1155.

    Article  PubMed  CAS  Google Scholar 

  5. Spencer, J. A., Baron, M. H., and Olson, E. N. (1999) Cooperative transcriptional activation by serum response factor and the high mobility group protein SSRP1. J. Biol. Chem. 274, 15,686–15,693.

    Article  PubMed  CAS  Google Scholar 

  6. Yu, Y., Yussa, M., Song, J., Hirsch, J., and Pick, L. (1999) A double interaction screen identifies positive and negative ftz gene regulators and ftz-interacting proteins. Mech. Dev. 83, 95–105.

    Article  PubMed  CAS  Google Scholar 

  7. Luo, Y., Vijaychander, S., Stile, J., and Zhu, L. (1996) Cloning and analysis of DNA-binding proteins by yeast one-hybrid and one-two-hybrid systems. Biotechniques 20, 564–568.

    PubMed  CAS  Google Scholar 

  8. Wilson, T. E., Fahrner, T. J., Johnston, M., and Milbrandt, J. (1991) Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, J., Wilson, T., Milbrandt, J., and Johnston, M. (1993) Identifying DNA-binding sites and analyzing DNA-binding domains using a yeast selection system. Methods 5, 125–137.

    Article  CAS  Google Scholar 

  10. Celniker, S. E., Sweder, K., Srienc, F., Bailey, J. E., and Campbell, J. L. (1984) Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 2455–2466.

    PubMed  CAS  Google Scholar 

  11. Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., and Feldmann, H. (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 450, 7–34.

    Article  Google Scholar 

  12. Thatcher, J. D., Haun, C., and Okkema, P. G. (1999) The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx. Development 126, 97–107.

    PubMed  CAS  Google Scholar 

  13. Wei, Z., Angerer, R. C., and Angerer, L. M. (1999) Identification of a new sea urchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter. Mol. Cell. Biol. 19, 1271–1278.

    PubMed  CAS  Google Scholar 

  14. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.

    Article  PubMed  CAS  Google Scholar 

  15. Oda, E., Shirasuna, K., Suzuki, M., Nakano, K., Nakajima, T., and Oda, K. (1998) Cloning and characterization of a GC-box binding protein, G10BP-1, responsible for repression of the rat fibronectin gene. Mol. Cell. Biol. 18, 4772–4782.

    PubMed  CAS  Google Scholar 

  16. Cooper, J. P., Nimmo, E. R., Allshire, R. C., and Cech, T. R. (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747.

    Article  PubMed  CAS  Google Scholar 

  17. De Felice, B., Pontecorvo, G., and Carfagna, M. (1999) Identification of a new gene encoding pericentromeric dodeca-satellite binding protein in Drosophila melanogaster. FEBS Lett. 455, 31–35.

    Article  PubMed  Google Scholar 

  18. Sandell, L. L. and Zakian, V. A. (1993) Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75, 729–739.

    Article  PubMed  CAS  Google Scholar 

  19. Conrad, M. N., Wright, J. H., Wolf, A. J., and Zakian, V. A. (1990) RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750.

    Article  PubMed  CAS  Google Scholar 

  20. Gyuris, J., Golemis, E., Chertkov, H., and Brent, R. (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803.

    Article  PubMed  CAS  Google Scholar 

  21. Kennedy, B. K., Austriaco, N. R., Zhang, J., and Guarente, L. (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–496.

    Article  PubMed  CAS  Google Scholar 

  22. Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582.

    Article  PubMed  CAS  Google Scholar 

  23. Mastick, G. S., McKay, R., Oligino, T., Donovan, K., and Lopez, A. J. (1995) Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast. Genetics 139, 349–363.

    PubMed  CAS  Google Scholar 

  24. Wotton, D. and Shore, D. (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760.

    Article  PubMed  CAS  Google Scholar 

  25. Conrad, M. N., Dominguez, A. M., and Dresser, M. E. (1997) Ndj1p, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. Science 276, 1252–1255.

    Article  PubMed  CAS  Google Scholar 

  26. Chua, P. R. and Roeder, G. S. (1997) Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev. 11, 1786–1800.

    Article  PubMed  CAS  Google Scholar 

  27. Holmes, S. G., Rose, A. B., Steuerle, K., Saez, E., Sayegh, S., Lee, Y. M., and Broach, J. R. (1997) Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. Genetics 145, 605–614.

    PubMed  CAS  Google Scholar 

  28. Struhl, K. and Davis, R. W. (1977) Production of a functional eukaryotic enzyme in Escherichia coli: cloning and expression of the yeast structural gene for imidazole-glycerolphosphate dehydratase (his3). Proc. Natl. Acad. Sci. USA 74, 5255–5259.

    Article  PubMed  CAS  Google Scholar 

  29. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762.

    Article  PubMed  CAS  Google Scholar 

  30. Wright, J. H., Gottschling, D. E., and Zakian, V. A. (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 6, 197–210.

    Article  PubMed  CAS  Google Scholar 

  31. Runge, K. W. and Zakian, V. A. (1990) Properties of the transcriptional enhancer in Saccharomyces cerevisiae telomeres. Nucleic Acids Res. 18, 1783–1787.

    Article  PubMed  CAS  Google Scholar 

  32. Shore, D. and Nasmyth, K. (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51, 721–732.

    Article  PubMed  CAS  Google Scholar 

  33. Donze, D., Adams, C. R., Rine, J., and Kamakaka, R. T. (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698–708.

    Article  PubMed  CAS  Google Scholar 

  34. Bi, X. and Broach, J. R. (1999) UASrpg can function as a heterochromatin boundary element in yeast. Genes Dev. 13, 1089–1101.

    Article  PubMed  CAS  Google Scholar 

  35. Nimmo, E. R., Cranston, G., and Allshire, R. C. (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J. 13, 3801–3811.

    PubMed  CAS  Google Scholar 

  36. Farr, C., Fantes, J., Goodfellow, P., and Cooke, H. (1991) Functional reintroduction of human telomeres into mammalian cells. Proc. Natl. Acad. Sci. USA 88, 7006–7010.

    Article  PubMed  CAS  Google Scholar 

  37. Hanish, J. P., Yanowitz, J. L., and De Lange, T. (1994) Stringent sequence requirements for the formation of human telomeres. Proc. Natl. Acad. Sci. USA 91, 8861–8865.

    Article  PubMed  CAS  Google Scholar 

  38. Nogi, Y., Shimada, H., Matsuzaki, Y., Hashimoto, H., and Fukasawa, T. (1984) Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. II. The isolation and dosage effect of the regulatory gene GAL80. Mol. Gen. Genet. 195, 29–34.

    Article  PubMed  CAS  Google Scholar 

  39. Wolf, S., Roder, K., and Schweizer, M. (1996) Construction of a reporter plasmid that allows expression libraries to be exploited for the one-hybrid system. Biotechniques 20, 568–574.

    PubMed  CAS  Google Scholar 

  40. Zakian, V. A. and Scott, J. F. (1982) Construction, replication and chromatin structure of TRP1 RI circle, a multiple-copy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA. Molec. Cell. Biol. 2, 221–232.

    PubMed  CAS  Google Scholar 

  41. Breeden, L. and Nasmyth, K. (1985) Regulation of the yeast HO gene. Cold Spring Harbor Symp. Quant. Biol. 50, 643–650.

    PubMed  CAS  Google Scholar 

  42. Guarente, L. (1983) Yeast promoters and lac Z fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101C, 181–191.

    Article  Google Scholar 

  43. Gietz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.

    Article  PubMed  CAS  Google Scholar 

  44. Kimmerly, W. J. and Rine, J. (1987) Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae are controlled by the SIR genes. Mol. Cell. Biol. 7, 4225–4237.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Alexander, M.K., Bourns, B.D., Zakian, V.A. (2001). One-Hybrid Systems f hor Detecting Protein-DNA Interactions. In: MacDonald, P.N. (eds) Two-Hybrid Systems. Methods in Molecular Biology, vol 177. Humana Press. https://doi.org/10.1385/1-59259-210-4:241

Download citation

  • DOI: https://doi.org/10.1385/1-59259-210-4:241

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-832-5

  • Online ISBN: 978-1-59259-210-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics