One-Hybrid Systems f hor Detecting Protein-DNA Interactions

  • Mary Kate Alexander
  • Brenda D. Bourns
  • Virginia A. Zakian
Part of the Methods in Molecular Biology book series (MIMB, volume 177)

Abstract

The yeast two-hybrid assay has proven useful for detecting protein-protein interactions. A variation on the theme can be used for finding proteins that interact with a particular DNA sequence. The one-hybrid assay, so far carried out only in Saccharomyces cerevisiae, in its simplest form (Fig. 1) consists of a DNA sequence of interest placed upstream of a reporter gene. The reporter gene can be either on a plasmid (1) or integrated into the chromosome (2). The protein or library being tested is cloned into a vector that expresses that protein fused to a transcription activation domain (TAD), the equivalent of the prey protein in a two-hybrid assay. This hybrid protein is expressed in the strain carrying the reporter gene. If the protein is able to interact with the sequence of interest, by either binding directly to the DNA or indirectly via interaction with a DNA-binding protein, transcription of the reporter gene is activated.
Fig. 1.

A generic one-hybrid assay. The DNA sequence of interest is placed upstream of a reporter gene with a minimal promoter, either on a plasmid or integrated into a chromosome. A hybrid protein consisting of a TAD fused to a protein that interacts with the target site is able to activate transcription of the reporter gene.

Keywords

Cysteine Proline Lysine Arginine Tryptophan 

References

  1. 1.
    Wang, M. M. and Reed, R. R. (1993) Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364, 121–126.PubMedCrossRefGoogle Scholar
  2. 2.
    Li, J. J. and Herskowitz, I. (1993) Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262, 1870–1874.PubMedCrossRefGoogle Scholar
  3. 3.
    Bourns, B. D., Alexander, M. K., Smith, A. M., and Zakian, V. A. (1998) Sir proteins, Rif proteins and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18, 5600–5608.PubMedGoogle Scholar
  4. 4.
    Ortiz, J., Stemmann, O., Rank, S., and Lechner, J. (1999) A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13, 1140–1155.PubMedCrossRefGoogle Scholar
  5. 5.
    Spencer, J. A., Baron, M. H., and Olson, E. N. (1999) Cooperative transcriptional activation by serum response factor and the high mobility group protein SSRP1. J. Biol. Chem. 274, 15,686–15,693.PubMedCrossRefGoogle Scholar
  6. 6.
    Yu, Y., Yussa, M., Song, J., Hirsch, J., and Pick, L. (1999) A double interaction screen identifies positive and negative ftz gene regulators and ftz-interacting proteins. Mech. Dev. 83, 95–105.PubMedCrossRefGoogle Scholar
  7. 7.
    Luo, Y., Vijaychander, S., Stile, J., and Zhu, L. (1996) Cloning and analysis of DNA-binding proteins by yeast one-hybrid and one-two-hybrid systems. Biotechniques 20, 564–568.PubMedGoogle Scholar
  8. 8.
    Wilson, T. E., Fahrner, T. J., Johnston, M., and Milbrandt, J. (1991) Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu, J., Wilson, T., Milbrandt, J., and Johnston, M. (1993) Identifying DNA-binding sites and analyzing DNA-binding domains using a yeast selection system. Methods 5, 125–137.CrossRefGoogle Scholar
  10. 10.
    Celniker, S. E., Sweder, K., Srienc, F., Bailey, J. E., and Campbell, J. L. (1984) Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 2455–2466.PubMedGoogle Scholar
  11. 11.
    Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., and Feldmann, H. (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 450, 7–34.CrossRefGoogle Scholar
  12. 12.
    Thatcher, J. D., Haun, C., and Okkema, P. G. (1999) The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx. Development 126, 97–107.PubMedGoogle Scholar
  13. 13.
    Wei, Z., Angerer, R. C., and Angerer, L. M. (1999) Identification of a new sea urchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter. Mol. Cell. Biol. 19, 1271–1278.PubMedGoogle Scholar
  14. 14.
    Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.PubMedCrossRefGoogle Scholar
  15. 15.
    Oda, E., Shirasuna, K., Suzuki, M., Nakano, K., Nakajima, T., and Oda, K. (1998) Cloning and characterization of a GC-box binding protein, G10BP-1, responsible for repression of the rat fibronectin gene. Mol. Cell. Biol. 18, 4772–4782.PubMedGoogle Scholar
  16. 16.
    Cooper, J. P., Nimmo, E. R., Allshire, R. C., and Cech, T. R. (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747.PubMedCrossRefGoogle Scholar
  17. 17.
    De Felice, B., Pontecorvo, G., and Carfagna, M. (1999) Identification of a new gene encoding pericentromeric dodeca-satellite binding protein in Drosophila melanogaster. FEBS Lett. 455, 31–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Sandell, L. L. and Zakian, V. A. (1993) Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75, 729–739.PubMedCrossRefGoogle Scholar
  19. 19.
    Conrad, M. N., Wright, J. H., Wolf, A. J., and Zakian, V. A. (1990) RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750.PubMedCrossRefGoogle Scholar
  20. 20.
    Gyuris, J., Golemis, E., Chertkov, H., and Brent, R. (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803.PubMedCrossRefGoogle Scholar
  21. 21.
    Kennedy, B. K., Austriaco, N. R., Zhang, J., and Guarente, L. (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–496.PubMedCrossRefGoogle Scholar
  22. 22.
    Chien, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582.PubMedCrossRefGoogle Scholar
  23. 23.
    Mastick, G. S., McKay, R., Oligino, T., Donovan, K., and Lopez, A. J. (1995) Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast. Genetics 139, 349–363.PubMedGoogle Scholar
  24. 24.
    Wotton, D. and Shore, D. (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760.PubMedCrossRefGoogle Scholar
  25. 25.
    Conrad, M. N., Dominguez, A. M., and Dresser, M. E. (1997) Ndj1p, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. Science 276, 1252–1255.PubMedCrossRefGoogle Scholar
  26. 26.
    Chua, P. R. and Roeder, G. S. (1997) Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev. 11, 1786–1800.PubMedCrossRefGoogle Scholar
  27. 27.
    Holmes, S. G., Rose, A. B., Steuerle, K., Saez, E., Sayegh, S., Lee, Y. M., and Broach, J. R. (1997) Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. Genetics 145, 605–614.PubMedGoogle Scholar
  28. 28.
    Struhl, K. and Davis, R. W. (1977) Production of a functional eukaryotic enzyme in Escherichia coli: cloning and expression of the yeast structural gene for imidazole-glycerolphosphate dehydratase (his3). Proc. Natl. Acad. Sci. USA 74, 5255–5259.PubMedCrossRefGoogle Scholar
  29. 29.
    Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762.PubMedCrossRefGoogle Scholar
  30. 30.
    Wright, J. H., Gottschling, D. E., and Zakian, V. A. (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 6, 197–210.PubMedCrossRefGoogle Scholar
  31. 31.
    Runge, K. W. and Zakian, V. A. (1990) Properties of the transcriptional enhancer in Saccharomyces cerevisiae telomeres. Nucleic Acids Res. 18, 1783–1787.PubMedCrossRefGoogle Scholar
  32. 32.
    Shore, D. and Nasmyth, K. (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51, 721–732.PubMedCrossRefGoogle Scholar
  33. 33.
    Donze, D., Adams, C. R., Rine, J., and Kamakaka, R. T. (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13, 698–708.PubMedCrossRefGoogle Scholar
  34. 34.
    Bi, X. and Broach, J. R. (1999) UASrpg can function as a heterochromatin boundary element in yeast. Genes Dev. 13, 1089–1101.PubMedCrossRefGoogle Scholar
  35. 35.
    Nimmo, E. R., Cranston, G., and Allshire, R. C. (1994) Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J. 13, 3801–3811.PubMedGoogle Scholar
  36. 36.
    Farr, C., Fantes, J., Goodfellow, P., and Cooke, H. (1991) Functional reintroduction of human telomeres into mammalian cells. Proc. Natl. Acad. Sci. USA 88, 7006–7010.PubMedCrossRefGoogle Scholar
  37. 37.
    Hanish, J. P., Yanowitz, J. L., and De Lange, T. (1994) Stringent sequence requirements for the formation of human telomeres. Proc. Natl. Acad. Sci. USA 91, 8861–8865.PubMedCrossRefGoogle Scholar
  38. 38.
    Nogi, Y., Shimada, H., Matsuzaki, Y., Hashimoto, H., and Fukasawa, T. (1984) Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. II. The isolation and dosage effect of the regulatory gene GAL80. Mol. Gen. Genet. 195, 29–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Wolf, S., Roder, K., and Schweizer, M. (1996) Construction of a reporter plasmid that allows expression libraries to be exploited for the one-hybrid system. Biotechniques 20, 568–574.PubMedGoogle Scholar
  40. 40.
    Zakian, V. A. and Scott, J. F. (1982) Construction, replication and chromatin structure of TRP1 RI circle, a multiple-copy synthetic plasmid derived from Saccharomyces cerevisiae chromosomal DNA. Molec. Cell. Biol. 2, 221–232.PubMedGoogle Scholar
  41. 41.
    Breeden, L. and Nasmyth, K. (1985) Regulation of the yeast HO gene. Cold Spring Harbor Symp. Quant. Biol. 50, 643–650.PubMedGoogle Scholar
  42. 42.
    Guarente, L. (1983) Yeast promoters and lac Z fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101C, 181–191.CrossRefGoogle Scholar
  43. 43.
    Gietz, D., St. Jean, A., Woods, R. A., and Schiestl, R. H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.PubMedCrossRefGoogle Scholar
  44. 44.
    Kimmerly, W. J. and Rine, J. (1987) Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae are controlled by the SIR genes. Mol. Cell. Biol. 7, 4225–4237.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Mary Kate Alexander
    • 1
  • Brenda D. Bourns
    • 1
  • Virginia A. Zakian
    • 1
  1. 1.Lewis Thomas LabPrinceton UniversityPrinceton

Personalised recommendations