Selection of Glycosaminoglycan-Deficient Mutants

  • Xiaomei Bai
  • Brett Crawford
  • Jeffrey D. Esko
Part of the Methods in Molecular Biology™ book series (MIMB, volume 171)

Abstract

Mutant cell lines provide an excellent model for studying the structure, assembly and function of proteoglycans under the controlled conditions of tissue culture. Numerous proteoglycan-deficient strains have been isolated, mostly in Chinese hamster ovary cells, and in many cases the defects have been characterized both genetically and biochemically (see Table 1). Biochemical analysis of the mutants has confirmed that various enzyme activities detected in cell-free extracts using synthetic substrates actually play a role in proteoglycan assembly in vivo. The cell lines have allowed investigators to study how altering the composition of proteoglycans affects fundamental properties of cells, such as adhesion and signaling. Moreover, animal cell mutants provide the background for predicting the phenotype of organismal mutants defective in proteoglycan assembly.
Table 1

Cell Mutants with Defined Defects in Glycosaminoglycan Biosynthesis

ComplementationGroup

Biochemical Defect

Phenotype

pgsA (CHO) (28)

Xylosyltransferase

Glycosaminoglycan-deficient

pgsB (CHO) (29)

Galactosyltransferase I

Glycosaminoglycan-deficient

pgsG (CHO) (20)

Glucuronosyltransferase I

Glycosaminoglycan-deficient

pgsD (CHO) (30)

N-acetylglucosaminyl/glucuronosyltransferase (EXT-1)

Heparan sulfate-deficient

Gro2C (mouse L-cells) (3,31)

N-acetylglucosaminyl/glucuronosyltransferase (EXT-1)

Heparan sulfate-deficient

ldlD (CHO) (32,33)

UDP-glucose/galactose (GlcNAc/GalNAc) 4-epimerase

Chondroitin sulfate-deficient when starved for GalNAc; GAG-deficient when starved for galactose

pgsC (CHO) (34)

Sulfate transporter

Normal glycosaminoglycans; deficient labeling with 35SO4

pgsE (CHO) (35)

N-deacetylase/N-sulfotransferase 1 (NDST-1)

Undersulfated heparan sulfate

CM-15 (COS cells) (36)

N-deacetylase/N-sulfotransferase (undefined locus)

Undersulfated heparan sulfate

pgsF (CHO) (26)

2-O-sulfotransferase

Deficient 2-O-sulfation of heparan sulfate

Keywords

Sugar Toxicity Carbohydrate Tyrosine Penicillin 

References

  1. 1.
    Esko, J. D. (1989) Replica plating of animal cells. Meth. Cell Biol. 32, 387–422.CrossRefGoogle Scholar
  2. 2.
    Inestrosa, N. C., Matthew, W. D., Reiness, C. G., Hall, Z. W., and Reichardt, L. F. (1985) Atypical distribution of asymmetric acetylcholinesterase in mutant PC 12 pheochromocytoma cells lacking a cell surface heparan sulfate proteoglycan. J. Neurochem. 45, 86–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Banfield, B. W., Leduc, Y., Esford, L., Schubert, K., and Tufaro, F. (1995) Sequential isolation of proteoglycan synthesis mutants by using herpes simplex virus as a selective agent: Evidence for a proteoglycan-independent virus entry pathway. J. Virol. 69, 3290–3298.PubMedGoogle Scholar
  4. 4.
    Gruenheid, S., Gatzke, L., Meadows, H., and Tufaro, F. (1993) Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J.Virol. 67,93–100.PubMedGoogle Scholar
  5. 5.
    WuDunn, D. and Spear, P.G. (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63, 52–58.PubMedGoogle Scholar
  6. 6.
    Shieh, M.-T., WuDunn, D., Montgomery, R. I., Esko, J. D., and Spear, P. G. (1992) Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell Biol. 116, 1273–1281.PubMedCrossRefGoogle Scholar
  7. 7.
    Spear, P. G. (1993) Entry of alphaherpesviruses into cells. Virology 4, 167–180.Google Scholar
  8. 8.
    Shieh, M. T. and Spear, P. G. (1994) Herpesvirus-induced cell fusion that is dependent on cell surface heparan sulfate or soluble heparin. J. Virol. 68, 1224–1228.PubMedGoogle Scholar
  9. 9.
    Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X. M., Esko, J. D., et al. (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99, 13–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Stanley, P. and Ioffe, E. (1995) Glycosyltransferase mutants: Key to new insights in glycobiology. FASEB J. 9, 1436–1444.PubMedGoogle Scholar
  11. 11.
    Cummings, R. D. (1999) Plant Lectins, in Essentials of Glycobiology (Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Hart, G. W., and Marth, J. D., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 455–467.Google Scholar
  12. 12.
    Stanley, P. (1993) Use of mammalian cell mutants to study the functions of N-and O-linked glycosylation, in Cell Surface and Extracellular Glycoconjugates: Structure and Function (Roberts, D. D. and Mecham, R. P., eds.) Academic Press, San Diego, pp. 181–222.Google Scholar
  13. 13.
    Stanley, P., Raju, T. S. and Bhaumik, M. (1996) CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases. Glycobiology 6, 695–699.PubMedCrossRefGoogle Scholar
  14. 14.
    Esko, J. D. (1999) Genetic Disorders of Glycosylation in Cultured Cells, in Essentials of Glycobiology (Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Hart, G. W., and Marth, J. D., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 469–477.Google Scholar
  15. 15.
    Van Den Born, J., Gunnarsson, K., Bakker, M. A. H., Kjellén, L., Kusche-Gullberg, M., Maccarana, M., et al. (1996) Presence of N-unsubstituted glucosamine units in native heparan sulfate revealed by a monoclonal antibody. J. Biol. Chem. 270, 31,303–31,309.Google Scholar
  16. 16.
    Van Den Born, J., Jann, K., Assmann, K. J. M., Lindahl, U., and Berden, J. H. M. (1996) N-acetylated domains in heparan sulfates revealed by a monoclonal antibody against the Escherichia coli K5 capsular polysaccharide-Distribution of the cognate epitope in normal human kidney and transplant kidney with chronic vascular rejection. J. Biol. Chem. 271, 22,802–22,809.PubMedCrossRefGoogle Scholar
  17. 17.
    Van Kuppevelt, T. H., Dennissen, M. A. B. A., Van Venrooij, W. J., Hoet, R. M. A., and Veerkamp, J. H. (1998) Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology-Further evidence for heparan sulfate heterogeneity in the kidney. J. Biol. Chem. 273, 12,960–12,966.PubMedCrossRefGoogle Scholar
  18. 18.
    Lappi, D. A., Ying, W., Barthelemy, I., Martineau, D., Prieto, I., Benatti, L., Soria, M., and Baird, A. (1994) Expression and activities of a recombinant basic fibroblast growth factor-saporin fusion protein. J. Biol. Chem. 269, 12,552–12,558.PubMedGoogle Scholar
  19. 19.
    Lappi, D. A., Maher, P. A., Martineau, D., and Baird, A. (1991) The basic fibroblast growth factor-saporin mitotoxin acts through the basic fibroblast growth factor receptor. J. Cell Physiol. 147, 17–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Bai, X. M., Wei, G., Sinha, A., and Esko, J. D. (1999) Chinese hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I. J. Biol. Chem. 274, 13,017–13,024.PubMedCrossRefGoogle Scholar
  21. 21.
    Jackson, R. L., Busch, S. J., and Cardin, A. D. (1991) Glycosaminoglycans: Molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71, 481–539.PubMedGoogle Scholar
  22. 22.
    Lappi, D. A., Martineau, D., and Baird, A. (1989) Biological and chemical characterization of basic FGF-saporin mitotoxin. Biochem. Biophys. Res. Commun. 160, 917–923.PubMedCrossRefGoogle Scholar
  23. 23.
    Lappi, D. A., Matsunami, R., Martineau, D., and Baird, A. (1993) Reducing the heterogeneity of chemically conjugated targeted toxins: homogeneous basic FGF-saporin. Anal. Biochem. 212, 446–451.PubMedCrossRefGoogle Scholar
  24. 24.
    Buechler, Y. J., Sosnowski, B. A., Victor, K. D., Parandoosh, Z., Bussell, S. J., Shen, C., et al. (1995) Synthesis and characterization of a homogeneous chemical conjugate between basic fibroblast growth factor and saporin. Eur. J. Biochem. 234, 706–713.PubMedCrossRefGoogle Scholar
  25. 25.
    McDonald, J. R., Ong, M., Shen, C., Parandoosh, Z., Sosnowski, B., Bussell, S., and Houston, L. L. (1996) Large-scale purification and characterization of recombinant fibroblast growth factor-saporin mitotoxin. Protein. Expr. Purif. 8, 97–108.PubMedCrossRefGoogle Scholar
  26. 26.
    Bai, X. M. and Esko, J. D. (1996) An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J. Biol.C hem. 271, 17,711–17,717.Google Scholar
  27. 27.
    de Agostini, A. L., Lau, H. K., Leone, C., Youssoufian, H., and Rosenberg, R. D. (1990) Cell mutants defective in synthesizing a heparan sulfate proteoglycan with regions of defined monosaccharide sequence. Proc. Natl. Acad. Sci. (USA) 87, 9784–9788.CrossRefGoogle Scholar
  28. 28.
    Esko, J. D., Stewart, T. E., and Taylor, W. H. (1985) Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl. Acad. Sci. (USA) 82, 3197–3201.CrossRefGoogle Scholar
  29. 29.
    Esko, J. D., Weinke, J. L., Taylor, W. H., Ekborg, G., Rodén, L., Anantharamaiah, G., and Gawish, A. (1987) Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I. J. Biol. Chem. 262, 12,189–12,195.PubMedGoogle Scholar
  30. 30.
    Lidholt, K., Weinke, J. L., Kiser, C. S., Lugemwa, F. N., Bame, K. J., Cheifetz, S., et al. (1992) A single mutation affects both N-acetylglucosaminyltransferase and glucuronosyltransferase activities in a Chinese hamster ovary cell mutant defective in heparan sulfate biosynthesis. Proc. Natl. Acad. Sci. (USA) 89, 2267–2271.CrossRefGoogle Scholar
  31. 31.
    McCormick, C., Leduc, Y., Martindale, D., Mattison, K., Esford, L.E., Dyer, A. P., and Tufaro, F. (1998) The putative tumour suppressor EXT1 alters the expression of cellsurface heparan sulfate. Nat. Genet. 19, 158–161.PubMedCrossRefGoogle Scholar
  32. 32.
    Kingsley, D. M., Kozarsky, K. F., Hobbie, L., and Krieger, M. (1986) Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell 44, 749–759.PubMedCrossRefGoogle Scholar
  33. 33.
    Esko, J. D., Rostand, K. S., and Weinke, J. L. (1988) Tumor formation dependent on proteoglycan biosynthesis. Science 241, 1092–1096.PubMedCrossRefGoogle Scholar
  34. 34.
    Esko, J. D., Elgavish, A., Prasthofer, T., Taylor, W. H., and Weinke, J. L. (1986) Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine. J. Biol. Chem. 261, 15,725–15,733.PubMedGoogle Scholar
  35. 35.
    Bame, K. J. and Esko, J. D. (1989) Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J. Biol. Chem. 264, 8059–8065.PubMedGoogle Scholar
  36. 36.
    Ishihara, M., Kiefer, M. C., Barr, P. J., Guo, Y., and Swiedler, S. J. (1992) Selection of COS cell mutants defective in the biosynthesis of heparan sulfate proteoglycan. Anal. Biochem. 206, 400–407.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Xiaomei Bai
    • 1
  • Brett Crawford
    • 1
  • Jeffrey D. Esko
    • 1
  1. 1.Department of Cellular and Molecular Medicine, Glycobiology Research and Training CenterUniversity of CaliforniaSan DiegoLa Jolla

Personalised recommendations