High-Specific-Activity 35S-Labeled Heparan Sulfate Prepared from Cultured Cells

  • Nicholas W. Shworak
Part of the Methods in Molecular Biology™ book series (MIMB, volume 171)


Cultured cells are a facile reagent for elucidating the molecular mechanisms that regulate the biosynthesis of heparan sulfate (HS) (1, 2, 3). However, a typical confluent flask (∼20 million cells) produces only a small amount of HS (1–2 µg), which is at or below the detection limit of many nonradioisotopic techniques. Fortunately, this limitation can be circumvented by the metabolic labeling of cells with Na2 35SO4. Sulfate from the culture medium is transported into the cytoplasm, where it is incorporated into the biosynthetic sulfate donor adenosine 3′-phosphate 5′-phosphosulfate (PAPS), which is transported into the Golgi apparatus (4). Specific biosynthetic enzymes transfer a sulfonyl group from PAPS onto maturing glycosaminoglycan chains.


Heparan Sulfate Equilibration Buffer Radioactive Contamination Metabolic Label Label Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bame, K. J. and Esko, J. D. (1989) Undersulfated heparan sulfate in a chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J. Biol. Chem. 264, 8059–8065.PubMedGoogle Scholar
  2. 2.
    Bame, K. J., Lidholt, K., Lindahl, U., and Esko, J. D. (1991) Biosynthesis of heparan sulfate. Coordination of polymer-modification reactions in a chinese hamster ovary cell mutant defective in N-sulfotransferase. J. Biol. Chem. 266, 10,287–10,293.PubMedGoogle Scholar
  3. 3.
    Shworak, N. W., Shirakawa, M., Colliec-Jouault, S., Liu, J., Mulligan, R. C., Birinyi, L. K., and Rosenberg, R. D. (1994) Pathway-specific regulation of the synthesis of anticoagulantly active heparan sulfate. J. Biol. Chem. 269, 24,941–24,952.PubMedGoogle Scholar
  4. 4.
    Ozeran, J. D., Westley, J., and Schwartz, N. B. (1996) Kinetics of PAPS translocase: evidence for an antiport mechanism. Biochemistry 35, 3685–3694.PubMedCrossRefGoogle Scholar
  5. 5.
    Klaassen, C. D. and Boles, J. W. (1997) Sulfation and sulfotransferases 5: the importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. Faseb J. s11, 404–418.Google Scholar
  6. 6.
    Sjoberg, I. and Malmstrom, A. (1982) Biosynthesis of dermatan sulphate in cultured fibroblasts. Characterization of newly synthesized glycans from cells and microsomes. Eur. J. Biochem. 128, 29–34PubMedCrossRefGoogle Scholar
  7. 7.
    Kimura, J. H., Caputo, C. B., and Hascall, V. C. (1981) The effect of cycloheximide on synthesis of proteoglycans by cultured chondrocytes from the Swarm rat chondrosarcoma. J. Biol. Chem. 256, 4368–4376PubMedGoogle Scholar
  8. 8.
    Shworak, N. W., Fritze, L. M. S., Liu, J., Butler, L. D., and Rosenberg, R. D. (1996) Cell-free synthesis of anticoagulant heparan sulfate reveals a limiting activity which modifies a nonlimiting precursor pool. J. Biol. Chem. 271, 27,063–27,071.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu, J., Shworak, N. W., Fritze, L. M. S., Edelberg, J. M., and Rosenberg, R. D. (1996) Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J. Biol. Chem. 271, 27,072–27,082.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu, J., Shworak, N. W., Sinay, P., Schwartz, J. J., Zhang, L., Fritze, L. M., and Rosenberg, R. D. (1999) Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities. J. Biol. Chem. 274, 5185–5192.PubMedCrossRefGoogle Scholar
  11. 11.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, MA.Google Scholar
  12. 12.
    Humphries, D. E., Silbert, C. K., and Silbert, J. E. (1986) Glycosaminoglycan production by bovine aortic endothelial cells cultured in sulfate-depleted medium. J. Biol. Chem. 261, 9122–9127.PubMedGoogle Scholar
  13. 13.
    Keller, J. M. and Keller, K. M. (1987) Amino acid sulfur as a source of sulfate for sulfated proteoglycans produced by Swiss mouse 3T3 cells. Biochim. Biophys. Acta 926, 139–144.PubMedGoogle Scholar
  14. 14.
    Esko, J. D., Elgavish, A., Prasthofer, T., Taylor, W. H., and Weinke, J. L. (1986) Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine. J. Biol. Chem. 261, 15,725–15,733.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2001

Authors and Affiliations

  • Nicholas W. Shworak
    • 1
  1. 1.Department of MedicineHarvard Medical School; Angiogenesis Research Center, Beth Israel Deaconess Medical CenterBoston

Personalised recommendations