Skip to main content

Determination of a Transcription-Factor-Binding Site by Nuclease Protection Footprinting onto Southwestern Blots

  • Protocol
Book cover DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 148))

Abstract

The interaction of cell-type-specific or inducible transcription factors with regulatory DNA sequences in gene promoters or enhancers is a pivotal step in genetic reprograming during cell proliferation and differentiation and in response to extracellular stimuli. The study of these interactions and the characterization of the factors involved are, therefore, a critical aspect of gene control. Transcription factor-DNA interactions in eukaryotes have been demonstrated by a wide variety of biochemical approaches, including deoxyribonuclease I (DNase I) and chemical nuclease footprinting (13) (Chapter 3), methylation protection (4) (Chapter 14), electrophoretic mobility-shift (5,6) (Chapter 2), and Southwestern (SW) assays (7) (Chapter 17). Despite their broad applicability, these techniques provide only partial information about the DNA-protein system under investigation. The first three techniques identify either the site(s) of transcription factor binding within the DNA (size and location of nucleotide stretches or atoms on individual bases) or the complexity of the binding pattern (stoichiometry), but do not yield information about the protein(s) involved. On the other hand, the SW assay reveals the relative molecular mass of renaturable (on a membrane support) active species in heterogeneous protein mixtures facilitating their identification, but fails to localize the exact target element within the probing DNA sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galas, D. J. and Schmitz, A. (1978) DNase footprinting: A simple method for the detection of protein-DNA binding specificities. Nucleic Acids Res. 5, 3157–3170.

    Article  PubMed  CAS  Google Scholar 

  2. Tullius, T. D. and Dombroski, B. A. (1986) Hydroxyl radical “footprinting”: highresolution information about DNA-protein contacts and application to λ repressor and Cro protein. Proc. Natl. Acad. Sci. USA 83, 5469–5473.

    Article  PubMed  CAS  Google Scholar 

  3. Kuwabara, M. D. and Sigman, D. S. (1987) Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes. Biochemistry 26, 7234–7238.

    Article  PubMed  CAS  Google Scholar 

  4. Johnsrud, L. (1978) Contacts between Escherichia coli RNA polymerase and a lac operon promoter. Proc. Natl. Acad. Sci. USA 75, 5314–5318.

    Article  PubMed  CAS  Google Scholar 

  5. Garner, M. M. and Revzin, A. (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to compo-nents of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9, 3047–3060.

    Article  PubMed  CAS  Google Scholar 

  6. Fried, M. and Crothers, D. M. (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525.

    Article  PubMed  CAS  Google Scholar 

  7. Miskimins, W. K., Roberts, M. P., McClelland, A., and Ruddle, F. H. (1985) Use of a protein-blotting procedure and a specific DNA probe to identify nuclear proteins that recognize the promoter region of the transferrin receptor gene. Proc. Natl. Acad. Sci. USA 82, 6741–6744.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, S. E. and Papavassiliou, A. G. (1992) A coupled Southwestern-DNase I footprinting assay. Nucleic Acids Res. 20, 5239–5240.

    Article  PubMed  CAS  Google Scholar 

  9. Polycarpou-Schwarz, M. and Papavassiliou, A. G. (1993) Probing of DNA-protein complexes immobilized on protein-blotting membranes by the chemical nuclease 1,10-phenanthroline (OP)-cuprous ion. Methods Mol. Cell. Biol. 4, 22–26.

    CAS  Google Scholar 

  10. Polycarpou-Schwarz, M. and Papavassiliou, A. G. (1993) Distinguishing specific from nonspecific complexes on Southwestern blots by a rapid DMS protection assay. Nucleic Acids Res. 21, 2531–2532.

    Article  PubMed  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  12. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  13. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  14. Maxam, A. and Gilbert, W. (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65, 499–560.

    Article  PubMed  CAS  Google Scholar 

  15. Papavassiliou, A. G., Bohmann, K., and Bohmann, D. (1992) Determining the effect of inducible protein phosphorylation on the DNA-binding activity of transcription factors. Anal. Biochem. 203, 302–309.

    Article  PubMed  CAS  Google Scholar 

  16. Polycarpou-Schwarz, M. and Papavassiliou, A. G. (1995) Protein-DNA interactions revealed by the Southwestern blotting procedure. Methods Mol. Cell. Biol. 5, 152–161.

    Google Scholar 

  17. Papavassiliou, A. G. and Bohmann, D. (1992) Optimization of the signal-to-noise ratio in south-western assays by using lipid-free BS A as blocking reagent. Nucleic Acids Res. 20, 4365–4366.

    Article  PubMed  CAS  Google Scholar 

  18. Moreland, R. B., Montross, L., and Garcea, R. L. (1991) Characterization of the DNA-binding properties of the polyomavirus capsid protein VP1. J. Virol. 65, 1168–1176.

    PubMed  CAS  Google Scholar 

  19. Lakin, N. D. (1993) Determination of DNA sequences that bind transcription factors by DNA footprinting, in Transcription Factors: A Practical Approach (Latchman, D. S., ed.), IRL, Oxford, pp. 27–47.

    Google Scholar 

  20. Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R. J., Rahmsdorf, H. J., et al. (1987) Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729–739.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Papavassiliou, A.G. (2001). Determination of a Transcription-Factor-Binding Site by Nuclease Protection Footprinting onto Southwestern Blots. In: Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 148. Humana Press. https://doi.org/10.1385/1-59259-208-2:135

Download citation

  • DOI: https://doi.org/10.1385/1-59259-208-2:135

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-625-3

  • Online ISBN: 978-1-59259-208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics