Skip to main content

Primary Cell Cultures for the Study of Myelination

  • Protocol
Protocols for Neural Cell Culture

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Tissue culture allows the separate establishment of neurons and glia under a variety of conditions of substrate and media. By subsequent recombination of relatively pure cell populations, a number of questions of neuronal development and neuronal-glia interactions, specifically myelination, may be studied. In vivo, axons of dorsal root ganglion (DRG) neurons course through both the central nervous system (CNS) and peripheral nerve trunks, and induce myelination by both central (oligodendrocytes) and peripheral (Schwann cells) neuroglia. For this reason, and because dissociated DRG neurons are long-lived in vitro when nerve growth factor (NGF) is included in the medium, co-cultures of purified DRG neurons and purified myelinating cells (i.e., Schwann cells or oligodendrocytes) are ideal for the study of myelination. In culture, either peripheral nervous system (PNS) or CNS glial cells are added to the networks of nonneuronal cell-free disaggregated DRG neurons. When these co-cultures are provided with suitable medium, the glia expand in number; given another media, myelination occurs in several weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

General References

  • Bunge, M. B., Johnson, M. I., Ard, M. D., and Kleitman, N. (1987), Factors influencing the growth of regenerating nerve fibers in culture, in: Progress in Brain Research, vol. 71, Seil, F. J., Herbert, E., and Carlson, B. M., eds., Elsevier, pp. 61–74.

    Google Scholar 

  • Bunge, M. B., Bunge, R. P., Carey, D. J., Cornbrooks, C. J., Eldridge, C. F., Williams, A. K., and Wood, P. M. (1983), Axonal and nonaxonal influences in Schwann cell development, in: Developing and Regenerating Vertebrate Nervous Systems, Coates, P., Markwald, R., Kenny, A., eds., Alan R. Liss, New York, pp. 71–105.

    Google Scholar 

  • Bunge, R. P. (1986), The cell of Schwann, in Diseases of the Nervous System. McKhann, G., ed., Saunders, New York, pp. 153–162.

    Google Scholar 

  • Bunge, R. P., Bunge, M. B., and Eldridge, C. E. (1985), Linkage between axonal ensheathment and basal lamina production by Schwann cells. Ann. Rev. Neurosci. 9, 305–328.

    Article  Google Scholar 

  • Bunge, R. P., Johnson, M., and Ross, C. D. (1978), Nature and nurture in the development of the autonomic neuron. Science 199, 1409–1416.

    Article  PubMed  CAS  Google Scholar 

  • Eldridge, C. E., Cornbrooks, C. J., Chiu, A. Y., Bunge, R. P., and Sanes, J. R. (1986), Basal lamina-associated heparan sulfate proteoglycan in the rat peripheral nervous system: characterization and localization using monoclonal antibodies. J. Neurocytol. 15, 37–51.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, D. and Burton, H. (1982), Electrotonic synapses are formed by fetal rat sympathetic neurons maintained in a chemically-defined culture medium. Neuroscience 7, 2241–2253.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, M. I. and Argiro, V. (1983), Techniques for preparation of sympathetic ganglion cultures. Methods Enzymol. 103, 334–347.

    Article  PubMed  CAS  Google Scholar 

  • Lein, P., Quo, X., Hedges, A. M., Rueger, D., Johnson, M., and Higgins, D. (1996), The effects of extracellular matrix and osteogenic protein-1 on the morphological differentiation of rat sympathetic neurons. Int. J. Devi. Neurosci. 14, 203–215.

    Article  CAS  Google Scholar 

  • Mahanthappa, N. K. and Patterson, P. H. (1998), Culturing mammalian sympathoadrenal derivatives, in Culturing Nerve Cells, 2nd ed., Banker, G. and Goslin, K., eds., Massachusetts Institute of Technology, Boston, MA, pp. 289–307.

    Google Scholar 

  • Ratner, N., Bunge, R. P., and Glaser, L. (1985), A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation. J. Cell Biol. 101, 744–754.

    Article  PubMed  CAS  Google Scholar 

Specific References

  • Argiro, V., Bunge, M. D., and Johnson, M. I. (1984), Correlation between growth cone form and movement and their dependence on neuronal age. J. Neurosci. 4, 3051–3062.

    PubMed  CAS  Google Scholar 

  • Bornstein, M. B. (1958), Reconstituted rat-tail collagen used as a substrate for tissue cultures on coverslips. Lab. Invest. 7, 134–137.

    PubMed  CAS  Google Scholar 

  • Bottenstein, J. E. and Sato, G. H. (1979), Growth of a rat neuroblastoma cell line in serum-free supplemented media. Proc. Natl. Acad. Sci. USA 76, 514–517.

    Article  PubMed  CAS  Google Scholar 

  • Bray, D. (1970), Surface movements during the growth of single explanted neurons. Proc. Natl. Acad. Sci. USA 65, 905.

    Article  PubMed  CAS  Google Scholar 

  • Brockes, J. P., Fields, K. L., and Raff, M. C. (1979), Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165, 105–118.

    Article  PubMed  CAS  Google Scholar 

  • Bruckenstein, D. A. and Higgins, D. (1988a), Morphological differentiation of embryonic rat sympathetic neurons in tissue culture. I. Conditions under which neurons form axons but not dendrites. Dev. Biol. 128, 324–336.

    Article  PubMed  CAS  Google Scholar 

  • Bruckenstein, D. A. and Higgins, D. (1988b), Morphological differentiation of embryonic rat sympathetic neurons in tissue culture. II. Serum promotes dendritic growth. Dev. Biol. 128, 337–348.

    Article  PubMed  CAS  Google Scholar 

  • Bunge, R. P. and Wood, P. (1973), Studies on the transplantation of spinal cord tissue in the rat. I. Development of a culture system for minisections of embryonic spinal cord. Brain Res. 57, 261–276.

    Article  PubMed  CAS  Google Scholar 

  • Bunge, R. P. and Wood, P. M. (1987), Tissue culture studies of interactions between axons and myelinating cells of the central and peripheral nervous system. Prog. Brain Res. 71, 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Crain, S. (1976), Neurophysiologic Studies in Tissue Culture. Raven, New York.

    Google Scholar 

  • Eagle, H. (1959), Amino acid metabolism in mammalian cell cultures. Science 130, 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Eldridge, C. R., Bunge, M. B., and Bunge, R. P. (1989), Differentiation of axon-related Schwann cells in vitro. II. Control of myelin formation by basal lamina. J. Neurosci. 9, 625–638.

    PubMed  CAS  Google Scholar 

  • Eldridge, C. E., Bunge, M. B., Bunge, R. P., and Wood, P. M. (1987), Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 105, 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Valle, C., Fregien, N., Wood, P. M., and Bunge, M. B. (1993), Expression of the protein zero gene in axon-related Schwann cells is linked to basal lamina formation. Development 119, 867–880.

    PubMed  CAS  Google Scholar 

  • Guenard, V., Gwynn, L. A., and Wood, P. M. (1995), Transforming growth factor-b blocks myelination but not ensheathment of axons by Schwann cells in vitro. J. Neurosci. 15, 419–428.

    PubMed  CAS  Google Scholar 

  • Harrison, R. G. (1907), The living developing nerve fiber. Anat. Rec. 1, 116–118.

    Article  Google Scholar 

  • Higgins, D., Lein, P. J., Osterhout, D. J., and Johnson, M. I. (1991) Tissue culture of mammalian autonomic neurons, in Culturing Nerve Cells, 1st ed., Banker, G., ed., Massachusetts Institute of Technology, Boston, MA, pp. 177–205.

    Google Scholar 

  • Hild, W. (1957), Myelinogenesis in cultures of mammalian central nervous tissue. Z. Zellforsch. 46, 71–95.

    Article  PubMed  CAS  Google Scholar 

  • Iacovitti, L., Johnson, M. I., Joh, T. H., and Bunge, R. P. (1982), Biochemical and morphological characterization of sympathetic neurons grown in chemically defined medium. Neuroscience 7, 2225, 2240.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. M., Rich, K. M., and Yip, H. K. (1986), The role of NGF in sensory neurons in vivo. TINS 9, 33–37.

    CAS  Google Scholar 

  • Johnson, M. I., Paik, K., and Higgins, D. (1985), Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons. J. Cell Biol. 101, 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Kleitman, N. and Johnson, M. I. (1989), Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures. Cell Motil. Cytoskel. 13, 288–300.

    Article  CAS  Google Scholar 

  • Kleitman, N., Wood, P., Johnson, M. I., and Bunge, R. P. (1988), Schwann cell surfaces but not extracellular matrix support neurite outgrowth from embryonic rat retina. J. Neurosci. 8, 653–663.

    PubMed  CAS  Google Scholar 

  • Leibovitz, A. (1963), The growth and maintenance of tissue-cell culture in free gas exchange with the atmosphere. Am. J. Hyg. 78, 173–180.

    PubMed  CAS  Google Scholar 

  • Lein, P., Johnson, M., Guo, X., Rueger, D., and Higgins, D. (1995), Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15, 597–605.

    Article  PubMed  CAS  Google Scholar 

  • Levi, A. D. O., Bunge, R. R, Lofgren, J. A., Meima, L., Hefti, E., Nikolics, K., and Slewkowski, M. X. (1995), The influence of heregulin on human Schwann cell proliferation. J. Neurosci. 15, 1329–1340.

    PubMed  CAS  Google Scholar 

  • Long, J. A. and Burlingame, R. L. (1938), The development of the external form of the rat with observations on the origin of the external form of the rat with observations on the origin of the extraembryonic coelom and foetal membranes. Univ. CA Publ. Zool. 43, 143–183.

    Google Scholar 

  • McCarthy, K. and de Vellis, J. (1980), Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902.

    Article  PubMed  CAS  Google Scholar 

  • Meiri, K., Johnson, M. I., and Willard, M. (1988), Distribution and phosphorylation of the growth-associated protein, GAP-43, in regenerating sympathetic neurons in culture. J. Neurosci. 8, 2571–2581.

    PubMed  CAS  Google Scholar 

  • Mithen, R A., Cochran, M., Johnson, M. I., and Bunge, R. P. (1982), Neurotoxicity of polystyrene containers detected in a closed tissue culture system. Neurosci. Lett. 17, 107–111.

    Article  Google Scholar 

  • Morrissey, T. K., Kleitman, N., and Bunge, R. P. (1991), Isolation and functional characterization of Schwann cells derived from adult peripheral nerves. J. Neurosci. 11, 2433–2442.

    PubMed  CAS  Google Scholar 

  • Morrissey, T. K., Kleitman, N., and Bunge, R. P. (1995), Human Schwann cells in vitro II: myelination of sensory axons following extensive purification and heregulin-induced expansion. J. Neurobiol. 28, 190–201.

    Article  PubMed  CAS  Google Scholar 

  • Murray, M. M. (1965), Nervous tissue in vitro, in: Cells and Tissues in Culture, vol. 2, Wilmer, E.N., ed., Academic, New York, pp. 373–455.

    Google Scholar 

  • Obremski, V. J., Johnson, M. I., and Bunge, M. B. (1993), Fibroblasts are required for Schwann cell basal lamina deposition and ensheathment of unmyelinated sympathetic neurites in culture. J. Neurocytol. 22, 102–117.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, P. H. (1978), Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci. 1, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, E. R. and Murray, M. R. (1955), Myelin sheath formation of avian spinal ganglia. Am. J. Anat. 96, 319.

    Article  PubMed  CAS  Google Scholar 

  • Porter, S., Clark, M. B., Glaser, L., and Bunge, R. P. (1986), Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. J. Neurosci. 6, 3070–3078.

    PubMed  CAS  Google Scholar 

  • Roufa, D., Bunge, M. B., Johnson, M. I., and Cornbrooks, C. J. (1986), Variation in content and function of non-neuronal cells in the outgrowth of sympathetic ganglia from embryos of differing age. J. Neurosci. 6, 790–802.

    PubMed  CAS  Google Scholar 

  • Roufa, D. G., Johnson, M. J., and Bunge, M. B. (1983), Influence of ganglion age, nonneuronal cells and substratum on neurite outgrowth in culture. Dev. Biol. 99, 225–239.

    Article  PubMed  CAS  Google Scholar 

  • Scarpini, E., Kreider, B. Q., Lisak, R. P., and Pleasure, D. E. (1988), Establishment of Schwann cell cultures from adult peripheral nerves. Exp. Neurol. 102, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Tropea, M., Johnson, M. I., and Higgins, D. (1988), Glial cells promote dendritic development in rat sympathetic neurons in vitro. Glia 1, 380–392.

    Article  PubMed  CAS  Google Scholar 

  • Wood, P. (1976), Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 115, 361–375.

    Article  PubMed  CAS  Google Scholar 

  • Wood, P. M. and Bunge, R. P. (1986), Myelination of cultured dorsal root ganglion neurons by oligodendrocytes obtained from adult rats. J. Neurol. Sci. 74, 153–169.

    Article  PubMed  CAS  Google Scholar 

  • Wood, P. M. and Williams, A. K. (1984), Oligodendrocyte proliferation and CNS myelination in cultures containing dissociated embryonic neuroglia and dorsal root ganglion neurons. Dev. Brain Res. 12, 225–241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedication

This chapter is dedicated to Richard P. Bunge (1932–1997), whose contributions were innumerable to the study of the cell of Schwann and both peripheral and central myelination.

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Johnson, M.I., Bunge, R.P., Wood, P.M. (2001). Primary Cell Cultures for the Study of Myelination. In: Fedoroff, S., Richardson, A. (eds) Protocols for Neural Cell Culture. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-207-4:95

Download citation

  • DOI: https://doi.org/10.1385/1-59259-207-4:95

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-902-5

  • Online ISBN: 978-1-59259-207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics