Skip to main content

Chick Spinal Somatic Motoneurons in Culture

  • Protocol
Book cover Protocols for Neural Cell Culture

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 3193 Accesses

Abstract

Cultures enriched in spinal somatic motoneurons are useful test systems for delineating the role of trophic factors in motoneuron survival and differentiation (e.g., McManaman et al., 1989, McManaman et al. 1990; Juurlink et al., 1991a; Henderson et al., 1994; Mettling et al., 1995; Kaal et al., 1997). They also form useful test systems for examining the roles of Fas receptor (Raoul et al., 1999) and thrombin receptor (Turgeon and Houenou, 1999) activation in motoneuron survival. Motoneurons in such cultures are obtained from embryonic spinal cord. There are basically two approaches whereby one can obtain cultures highly enriched in spinal motoneurons. One approach takes advantage of the fact that peripheral terminals of motoneurons can take up fluorescent labels and retrogradely transport these labels to the somas. Spinal cords can then be dissociated and labeled motoneurons isolated, using a fluorescence-activated cell sorter (e.g., Calof and Reichardt, 1984; Schaffner et al., 1987); this approach is labor-intensive and yields small numbers of neurons, of which only about 80% are labeled motoneurons. There are also questions concerning the effects of the tracer on the motoneurons (Smith et al., 1986). The second approach takes advantage of the fact that the buoyant density of motoneurons is significantly different from that of the other neural cell populations; here, motoneurons are separated from other cell populations by centrifuging cells through a density gradient (Schnaar and Schaffner, 1981; Dohrmann et al., 1986). This approach has the advantages that, technically, it is much simpler than the fluorescence-activated sorting method, and much larger numbers of motoneurons can be isolated. The cultures established from this latter approach, as described in this chapter, are free of nonneuronal cells, and are comprised of about 95% motoneurons as determined by calcitonin gene-related peptide immunocytochemistry (Juurlink et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Butler, H. and Juurlink B. H. J. (1987), An Atlas for Staging Mammalian and Chick Embryos, CRC, Boca Raton, FL, pp.1–218.

    Google Scholar 

  • Calof, A. L. and Reichardt, L. F. (1984), Motoneurons purified by cell sorting respond to two distinct activities in myotube-conditioned medium. Dev. Biol. 106, 194–210.

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann, U., Edgar, D., Sendtner, M., and Thoenen, H. (1986), Muscle-derived factors that support survival and promote fiber outgrowth from embryonic chick spinal motor neurons in culture. Dev. Biol. 118, 209–221.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V. and Hamilton, H. L. (1951), A series of normal stages in the development of the chick embryo. J. Morph. 88, 49–92.

    Article  Google Scholar 

  • Henderson, C. E., Phillips, H. S., Pollock, R. A., Davies, A. M., Lemeulle, C., Armanini, M., Simmons, L., Moffet, B., Vandlen, R. A., Simpson, L. C., et al. (1994), GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle [see comments] [published erratum appears in Science 1995 Feb 10;267:777]. Science 266, 1062–1064.

    Article  PubMed  CAS  Google Scholar 

  • Kaal, E. C., Joosten, E., A. and Bar, P. R. (1997), Prevention of apoptotic motoneuron death in vitro by neurotrophins and muscle extract. Neurochem. Int. 31, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Juurlink, B. H. J., Munoz, D. G., and Devon, R. M. (1990), Calcitonin gene-related peptide identifies spinal motoneurons in vitro. J. Neurosci. Res. 26, 238–241.

    Article  PubMed  CAS  Google Scholar 

  • Juurlink, B. H. J., Munoz, D. G., and Devon, R. M. (1991a), Muscle derived trophic factors promote the survival of motoneurons in vitro only when serum is present in the growth medium. Int. J. Neurosci. 58, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Juurlink, B. H. J., Munoz, D. G., and Ang, L. C. (1991b), Motoneuron survival in vitro: effects of pyruvate, a-ketoglutarate, gangliosides and potassium. Neurosci. Lett. 133, 25–28.

    Article  PubMed  CAS  Google Scholar 

  • McManaman, J., Crawford, R., Clark, R., Richker, J., and Fuller, F. (1989), Multiple neurotrophic factors from skeletal muscle: demonstration of effects of basic fibroblast growth factor and comparisons with the 22-kilodalton choline acetyltransferase factor. J. Neurochem. 53, 1763–1771.

    Article  PubMed  CAS  Google Scholar 

  • McManaman, J. L., Oppenheim, R. W., Prevette, D., and Marchetti, D. (1990), Rescue of motoneurons from cell death by a purified skeletal muscle polypeptide: effects of the ChAT development factor, CDF. Neuron 4, 891–898.

    Article  PubMed  CAS  Google Scholar 

  • Mettling, C., Gouin, A., Robinson, M., el M’Hamdi, H., Camu, W., Bloch-Gallego, E., Buisson, B., Tanaka, H., Davies, A. M., and Henderson, C. E. (1995), Survival of newly postmitotic motoneurons is transiently independent of exogenous trophic support. J. Neurosci. 15, 3128–3137.

    PubMed  CAS  Google Scholar 

  • Raoul, C., Henderson, C. E., and Pettmann, B. (1999), Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell. Biol. 147, 1049–1062.

    Article  PubMed  CAS  Google Scholar 

  • Schaffner, A. E., St. John, P. A., and Barker, J. L. (1987), Fluorescence-activated cell sorting of embryonic mouse and rat motoneurons and their long term survival in vitro. J. Neurosci. 7, 3088–3104.

    PubMed  CAS  Google Scholar 

  • Schnaar, R. L. and Schaffner, A. E. (1981), Separation of cell types from embryonic chicken and rat spinal cord: characterization of motoneuron enriched fractions. J. Neurosci. 1, 204–217.

    PubMed  CAS  Google Scholar 

  • Smith, R. G., Vaca, K., McManaman, J., and Appel, S. H. (1986), Selective effects of skeletal muscle extract fractions on motoneuron development in vitro. J. Neurosci. 6, 439–447.

    PubMed  CAS  Google Scholar 

  • Turgeon, V. L. and Houenou, L. J. (1999), Prevention of thrombin-induced motoneuron degeneration with different neurotrophic factors in highly enriched cultures. J. Neurobiol. 38, 571–580.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Juurlink, B.H.J. (2001). Chick Spinal Somatic Motoneurons in Culture. In: Fedoroff, S., Richardson, A. (eds) Protocols for Neural Cell Culture. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-207-4:59

Download citation

  • DOI: https://doi.org/10.1385/1-59259-207-4:59

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-902-5

  • Online ISBN: 978-1-59259-207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics