Skip to main content

Electrophoretic Separation and Immunoblotting of Aβ1–40 and Aβ1–42

  • Protocol
Alzheimer's Disease

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 32))

Abstract

The main protein component of the plaques found in the brains of Alzheimer’s disease patients is Aβ, a peptide of 39 to 43 amino acids (reviewed in refs. 1 and 2). Two major Aβ isoforms have been identified in the brains of affected individuals ending at amino acids 40 and 42, respectively (3). The longer form, Aβ42, aggregates more rapidly in vitro (4) and is preferentially deposited in vivo (3 ,5,6). Normally, Aβ is secreted as an apparently soluble molecule (7 -9). It is generated by all cultured cells expressing its precursor protein, APP, and can be detected in vivo in the cerebrospinal fluid (10) and in plasma (11). Mutations linked to familial forms of Alzheimer’s disease have been found in the APP gene as well as two other genes encoding presenilin 1 and presenilin 2. They were shown to alter APP metabolism and, in particular, to either increase total Aβ or the relative abundance of the longer Aβ42 isoform (12-17). These observations have led to the hypothesis that Aβ42 may play a critical role in amyloid plaque formation and the development of Alzheimer’s disease. Obviously methods discriminating between the two major Aβ species are important in order to study this notion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selkoe, D. J. (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275,630–631.

    Article  CAS  PubMed  Google Scholar 

  2. Yankner, B. A. (1996) Mechanisms of neuronal degeneration inAlzheimer’s disease. Neuron 16,921–932.

    Article  CAS  PubMed  Google Scholar 

  3. Roher, A. E., Lowenson, J. D., Clarke, S., Wolkow, C., Wang, R., Cotter, R. J., et al. (1993) Structural alterations in the peptide backbone of β-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J. Biol. Chem. 268, 3072–3083.

    CAS  PubMed  Google Scholar 

  4. Jarrett, J. T., Berger, E. P., and Lansbury, P. T., Jr. (1993) The carboxy-terminus of the β-amyloid protein is critical for the seeding of amyloid formation: implication for the pathogenesis of Alzheimer’s disease. Biochemistry 32,4693–4697.

    Article  CAS  PubMed  Google Scholar 

  5. Gravina, S. A., Ho, L., Eckman, C. B., Long, K. E., Otvos, L., Jr., Younkin, L. H., Suzuki, N., and Younkin, S. G. (1995) Amyloid β (Aβ) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ 40 or Aβ 42(43). J. Biol. Chem. 270,7013–7016.

    Article  CAS  PubMed  Google Scholar 

  6. Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., and Ihara, Y. (1994) Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific monoclonals: evidence that an initially deposited species is Aβ42(43) Neuron 13, 45–53.

    Article  CAS  PubMed  Google Scholar 

  7. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., et al. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325.

    Article  CAS  PubMed  Google Scholar 

  8. Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., et al. (1992) Production of the Alzheimer amyloid β-protein by normal proteolytic processing. Science 258,126–129.

    Article  CAS  PubMed  Google Scholar 

  9. Busciglio, J., Gabuzda, D. H., Matsudaira, P., and Yankner, B. A. (1993) Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. USA 90, 2092–2096.

    Article  CAS  PubMed  Google Scholar 

  10. Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., et al. (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359, 325–327.

    Article  CAS  PubMed  Google Scholar 

  11. Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996) Secreted amyloid β-protein similar to that in senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to Alzheimer’s disease. Nat. Med. 2,864–870.

    Article  CAS  PubMed  Google Scholar 

  12. Citron, M., Olterdorf, T., Haass,., McConlogue, L., Hung, A. Y., Seubert, P., et al. (1992) Mutation of the β-amyloid prescursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360,672–674.

    Article  CAS  PubMed  Google Scholar 

  13. Cai, X.-D., Golde, T. E., and Younkin, S. G. (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–516.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, N., Cheung, T. T., Cai, X. D., Odaka, A., Otvos, L., Eckman, C., et al. (1994) An increased percentage of long amyloid β-protein secreted by familial amyloid β-protein precursor (βAPP717) mutants. Science 264, 1336–1340.

    Article  CAS  PubMed  Google Scholar 

  15. Tamaoka, A., Odaka, A., Ishibashi, Y., Usami, M., Sahara, N., Suzuki, N., et al. (1994) APP717 missense mutation affects the ratio of amyloid β protein species. J. Biol. Chem. 269, 32,721–32,724.

    CAS  PubMed  Google Scholar 

  16. Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., et al. (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat. Med. 3,67–72.

    Article  CAS  PubMed  Google Scholar 

  17. Mehta, N. D., Refolo, L. M., Eckman, C., Sanders, S., Yager, D., Perez-Tur, J., et al. (1998) Increased Aβ42(43) from cell lines expressing presenilin 1 mutations. Ann. Neurol. 43,256–258.

    Article  CAS  PubMed  Google Scholar 

  18. Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M., Henschen, A., et al. (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/β amyloid peptide analogs. J. Biol. Chem. 267, 546–554.

    CAS  PubMed  Google Scholar 

  19. Sweeney, P. J., Darker, J. G., Neville, W. A., Humphries, J., and Camilleri, P. (1993) Electrophoretic techniques for the analysis of synthetic amyloid βA4-related peptides. Anal. Biochem. 212, 179–184.

    Article  CAS  PubMed  Google Scholar 

  20. Hilbich, C., Kisters-Woike, B., Reed,., Masters, C. L., and Beyreuther, K. (1991) Aggregation and secondary structure of synthetic amyloid βA4 peptides of Alzheimer’s disease. J. Mol. Biol. 218,149–163.

    Article  CAS  PubMed  Google Scholar 

  21. Ida, N., Hartmann, T., Pantel, J., Schroder, J., Zerfass, R., Forstl, H., et al. (1996) Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J. Biol. Chem. 271,22,908–22,914.

    Article  CAS  PubMed  Google Scholar 

  22. Wiltfang, J., Arold, N., and Neuhoff V. (1991) Anew multiphasic buffer system for sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins and peptides with molecular masses 100,000-1,000, and their detection with picomolar sensitivity. Electrophoresis 12, 352–366.

    Article  CAS  PubMed  Google Scholar 

  23. Schägger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from1 to 100 kDa. Anal. Biochem. 166,368–379.

    Article  PubMed  Google Scholar 

  24. Klafki, H.-W., Wiltfang, J., and Staufenbiel, M. (1996) Electrophoretic separation of βA4 peptides (1-40) and (1-42). Anal. Biochem. 237, 24–29.

    Article  CAS  PubMed  Google Scholar 

  25. Wiltfang, J., Smirnov, A., Schnierstein, B., Kelemen, G., Matthies, U., Klafki, H.-W., et al. (1997) Improved electrophoretic separation and immunoblotting of betaamyloid (Aβ) peptides 1-40, 1-42, and 1-43. Electrophoresis 18, 527–532.

    Article  CAS  PubMed  Google Scholar 

  26. Klafki, H.-W., Abramowski, D., Swoboda, R., Paganetti, P. A., and Staufenbiel, M. (1996) The carboxyl termini of β-amyloid peptides 1-40 and 1-42 are generated by distinct γ-secretase activities. J. Biol. Chem. 271,28,655–28,659.

    Article  CAS  PubMed  Google Scholar 

  27. Manni, M., Cescato, R., and Paganetti, P. A. (1998) Lack of β-amyloid productionm in M19 cells deficient in site 2 processing of the sterol regulatory element binding proteins. FEBS Lett. 427, 367–370.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Staufenbiel, M., Paganetti, P.A. (2000). Electrophoretic Separation and Immunoblotting of Aβ1–40 and Aβ1–42 . In: Hooper, N.M. (eds) Alzheimer's Disease. Methods in Molecular Medicine™, vol 32. Humana Press. https://doi.org/10.1385/1-59259-195-7:91

Download citation

  • DOI: https://doi.org/10.1385/1-59259-195-7:91

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-737-3

  • Online ISBN: 978-1-59259-195-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics