Aβ-Induced Proinflammatory Cytokine Release from Differentiated Human THP-1 Monocytes

  • Kurt R. Brunden
  • June Kocsis-Angle
  • Paula Embury
  • Stephen L. Yates
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 32)

Abstract

As noted in the introductory chapters of this book, neuritic plaques composed of accumulated amyloid β (Aβ) peptide are a hallmark pathological feature of the Alzheimer’s disease (AD) brain. Compelling genetic data now implicate these plaques as key causative agents in AD onset, as all known mutations that lead to early onset familial AD (1-6) result in an increased production of the amyloidogenic Aβ1-42 isoform (7-11). Although it appears likely that the deposition of multimeric Aβ fibrils into plaques is a necessary step in AD onset, there is still uncertainty as to how Aβ and neuritic plaques might cause the neuropathology that leads to the dementia that is characteristic of this disease.

Keywords

Vortex Hydrogen Peroxide Filtration Dementia Chlorine 

References

  1. 1.
    Chartier-Harlin, M.-C., Crawford, F., Houlden, H., Warren, A., Hughes, D., Fidani, L., et al. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353, 844–845.CrossRefPubMedGoogle Scholar
  2. 2.
    Goate, A., Chartier-Harlin, M.-C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706.CrossRefPubMedGoogle Scholar
  3. 3.
    Mullan, M., Crawford, F., Axelman, K., Houlden, H., Lilius, L., Winblad, B., and Lannfelt, L. (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat. Genet. 1, 345–347.CrossRefPubMedGoogle Scholar
  4. 4.
    Murrell, J., Farlow, M., Ghetti, B., and Benson, M. D. (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254, 97–99.CrossRefPubMedGoogle Scholar
  5. 5.
    Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269, 973–977.CrossRefPubMedGoogle Scholar
  6. 6.
    Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375, 754–760.CrossRefPubMedGoogle Scholar
  7. 7.
    Cai, X.-D., Golde, T. E., and Younkin, S. G. (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259 514–516.CrossRefPubMedGoogle Scholar
  8. 8.
    Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., et al. (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360, 672–674.CrossRefPubMedGoogle Scholar
  9. 9.
    Suzuki, N., Cheung, T. T., Cai, X.-D., Odaka, A., Otvos, L., Eckman, C., et al. (1994) An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264, 1336–1340.CrossRefPubMedGoogle Scholar
  10. 10.
    Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C.-M., Perez-tur, J., et al. (1996) Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.CrossRefPubMedGoogle Scholar
  11. 11.
    Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations in familial Alzheimer’s disease. Nat. Med. 2, 864–870.CrossRefPubMedGoogle Scholar
  12. 12.
    Haga, S., Adai, K., and Ishii, T. (1989) Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain: an immunohistochemical study using a novel monoclonal antibody. Acta Neuropathol. 77, 569–575.CrossRefPubMedGoogle Scholar
  13. 13.
    McGeer, P. L., Itagaki, S., Tago, H., and McGeer, E. G. (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histo-compatibility glycoprotein HLA-DR. Neurosci. Lett. 9, 195–200.CrossRefGoogle Scholar
  14. 14.
    Rogers, J., Luber-Narod, J., Styren, S. D., and Civin, W. H. (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging 9, 339–349.CrossRefPubMedGoogle Scholar
  15. 15.
    Griffin, W. S. T., Stanley, L. C., Ling. C., White, l., Macleod, V., Perrot, L., et al. (1989) Brain interleukin-1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Set USA 86, 7611–7615.CrossRefGoogle Scholar
  16. 16.
    Itagaki, S., McGeer, P. L., Akiyama, H., Zhu, S., and Selkoe, D. J. (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer’s disease. J. Neuroimmunol. 24, 173–182.CrossRefPubMedGoogle Scholar
  17. 17.
    Das, S. and Potter, H. (1995) Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron 14, 447–456.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee, S. C., Dickson, D. W., and Brosnan, C. F. (1995) Interleukin-1, nitric oxide and reactive astrocytes. Brain Behav. Immun. 9, 345–354.CrossRefPubMedGoogle Scholar
  19. 19.
    Cacabelos, R., Alvarez, X. A., Fernandez-Novoa, L., Franco, A., Mangues, R., Pellicer, A., and Nishimura, T. (1993) Brain interleukin-1β in Alzheimer’s disease and vascular dementia. Methods Find. Exp. Clin. Pharmacol. 16, 141–151.Google Scholar
  20. 20.
    Blum-Degen, D., Muller, T., Kuhn, W., Gerlach, M., Przuntek, H., and Riederer, P. (1995) Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci. Lett. 202, 17–20.CrossRefPubMedGoogle Scholar
  21. 21.
    McGeer, P. L., Schulzer, M., and McGeer, E. G. (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: areview of 17 epidemiologic studies. Neurology 47, 425–432.PubMedGoogle Scholar
  22. 22.
    Stewart, W. F., Kawas, C., Corrada, S. M., and Metter, E. J. (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48, 626–632.PubMedGoogle Scholar
  23. 23.
    Araujo, D. M. and Cotman, C. W. (1992) β-Amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res. 569, 141–145.CrossRefPubMedGoogle Scholar
  24. 24.
    Meda, L., Cassatella, M. A., Szendrel, G. I., Otvos, L., Baron, P., Villalba, M., et al. (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650.CrossRefPubMedGoogle Scholar
  25. 25.
    Yan, S. D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., et al. (1996) RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382,685–691.CrossRefPubMedGoogle Scholar
  26. 26.
    Lorton, D., Kocsis, J., King, L., Madden, K., and Brunden, K. R. (1996) β-Amyloid induces increased release of interleukin-1β from lipopolysaccharide-activated human monocytes. J. Neuroimmunol. 67, 21–29.PubMedGoogle Scholar
  27. 27.
    LeVine, H. (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2, 404–410.CrossRefPubMedGoogle Scholar
  28. 28.
    Gupta-Bansal, R. and Brunden, K. R. (1998) Congo red inhibits proteoglycan and serum amyloid P binding to amyloid β fibrils. J. Neurochem. 70, 292–298.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Kurt R. Brunden
    • 1
  • June Kocsis-Angle
    • 1
  • Paula Embury
    • 1
  • Stephen L. Yates
    • 1
  1. 1.Gliatech IncCleveland

Personalised recommendations