Skip to main content

Mutagenic Polymerase Chain Reaction of Protein-Coding Genes for In Vitro Evolution

  • Protocol
In Vitro Mutagenesis Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 182))

  • 1136 Accesses

Abstract

In vitro protein evolution is an efficient approach to study the structure and function of a protein, or to enhance its industrial utility (1). One round of evolution consists of random mutation of a protein-coding gene, expression the resulting library in a population of micro-organisms, and high-throughput screening or selection of clones that most strongly exhibit a desired phenotype (“winners”). After many rounds, mutations that confer the phenotype accumulate on a single allele, e.g., the authors have isolated an octuple mutant of the Escherichia coli β-glucuronidase with catalytic activity resistant to roughly 80-fold higher concentrations of glutaraldehyde than that of the wild-type enzyme (2). Here we describe a variation of the mutagenic polymerase chain reaction (PCR) (3,4) is described. The advantages of this method over other random mutagenesis techniques are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutherland, J. D. (2000) Evolutionary optimisation of enzymes. Curr. Opin. Chem. Biol. 4, 263–269.

    Article  PubMed  CAS  Google Scholar 

  2. Matsumura, I., Wallingford, J. B., Surana, N. K., Vize, P. D., and Ellington, A. D. (1999) Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase. Nat. Biotechnol. 17, 696–701.

    Article  PubMed  CAS  Google Scholar 

  3. Cadwell, R. C. and Joyce, G. F. (1992) Randomization of genes by PCR mutagen-esis. PCR Methods Appl. 2, 28–33.

    Article  PubMed  CAS  Google Scholar 

  4. Cadwell, R. C. and Joyce, G. F. (1994) Mutagenic PCR. PCR Methods Appl. 3, S136–S140.

    Article  PubMed  CAS  Google Scholar 

  5. Zaccolo, M., Williams, D. M., Brown, D. M., and Gherardi, E. (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J. Mol. Biol. 255, 589–603.

    Article  PubMed  CAS  Google Scholar 

  6. Greener, A. and Callahan, M. (1994) XL 1-Red: a highly efficient random mutagenesis strain. Strategies (Stratagene) 7, 32–34.

    Google Scholar 

  7. Martinez, M. A., Pezo, V., Marliere, P., and Wain-Hobson, S. (1996) Exploring the functional robustness of an enzyme by in vitro evolution. EMBO J. 15, 1203–1210.

    PubMed  CAS  Google Scholar 

  8. Black, M. E., Newcomb, T. G., Wilson, H. M., and Loeb, L. A. (1996) Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. USA 93, 3525–3529.

    Article  PubMed  CAS  Google Scholar 

  9. Stemmer, W. P. (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10,747–10,751.

    Article  PubMed  CAS  Google Scholar 

  10. Crameri, A., Raillard, S. A., Bermudez, E., and Stemmer, W. P. (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291.

    Article  PubMed  CAS  Google Scholar 

  11. Fromant, M., Blanquet, S., and Plateau, P. (1995) Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal. Biochem. 224, 347–353.

    Article  PubMed  CAS  Google Scholar 

  12. Matsumura, I. and Ellington, A. D. (1999) In vitro evolution of thermostable p53 variants. Protein Sci. 8, 731–740.

    Article  PubMed  CAS  Google Scholar 

  13. Miyazaki, K. and Arnold, F. H. (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J. Mol. Evol. 49, 716–720.

    Article  PubMed  CAS  Google Scholar 

  14. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319.

    Article  PubMed  CAS  Google Scholar 

  15. Crameri, A., Dawes, G., Rodriguez, Jr., E., Silver, S., and Stemmer, W. P. (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat. Biotechnol. 15, 436–438.

    Article  PubMed  CAS  Google Scholar 

  16. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, J. H., Dawes, G., and Stemmer, W. P. (1997) Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA 94, 4504–4509.

    Article  PubMed  CAS  Google Scholar 

  18. Zhao, H. and Arnold, F. H. (1997) Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25, 1307–1308.

    Article  PubMed  CAS  Google Scholar 

  19. King, P. V. and Blakesley, R. W. (1986) Optimizing DNA ligations for transformation. Focus (Gibco-BRL) 8, 1–3.

    Google Scholar 

  20. Inoue, H., Nojima, H., and Okayama, H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28.

    Article  PubMed  CAS  Google Scholar 

  21. Beckman, R. A., Mildvan, A. S., and Loeb, L. A. (1985) On the fidelity of DNA replication: manganese mutagenesis in vitro. Biochemistry 24, 5810–5817.

    Article  PubMed  CAS  Google Scholar 

  22. Wybranietz, W. A. and Lauer, U. (1998) Distinct combination of purification methods dramatically improves cohesive-end subcloning of PCR products. Biotechniques 24, 578–580.

    PubMed  CAS  Google Scholar 

  23. Thomas, M. R. (1994) Simple, effective cleanup of DNA ligation reactions prior to electro-transformation of E. coli. Biotechniques 16, 988–990.

    CAS  Google Scholar 

  24. Dower, W. J., Miller, J. F., and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127–6145.

    Article  PubMed  CAS  Google Scholar 

  25. Moore, J. C. and Arnold, F. H. (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat. Biotechnol. 14, 458–467.

    Article  PubMed  CAS  Google Scholar 

  26. Zaccolo, M. and Gherardi, E. (1999) The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. J. Mol. Biol. 285, 775–783.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Matsumura, I., Ellington, A.D. (2002). Mutagenic Polymerase Chain Reaction of Protein-Coding Genes for In Vitro Evolution. In: Braman, J. (eds) In Vitro Mutagenesis Protocols. Methods in Molecular Biology™, vol 182. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-194-9:259

Download citation

  • DOI: https://doi.org/10.1385/1-59259-194-9:259

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-910-0

  • Online ISBN: 978-1-59259-194-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics