Skip to main content

Apoptotic and Oxidative Indicators in Alzheimer’s Disease

  • Protocol
Book cover Apoptosis Techniques and Protocols

Abstract

Dogma suggests that cell death mechanisms can present with either a necrotic or an apoptotic phenotype. Recent evidence, however, seems to point to a far more complex picture, in which apoptotic and necrotic phenotypes might present simultaneously (1). For example, TUNEL positivity in cardiomyocytes does not necessarily entail the presence of cell death that has an apoptotic phenotype (2). Complicating the matter further is the promiscuous use of the same term, apoptosis, to mean different things at different times, by conflating process (a cell death program) with product (the apoptotic phenotype). Cell death can be classified into programmed cell death, which entails a global/extrinsic program of cell death, and a cell death program(s), which entails a local/intrinsic/ cellular death program (3). The latter can present in a variety of phenotypes ranging from necrosis to apoptosis or as a combination phenotype (1), while the former is seen primarily during development and presents with an apoptotic phenotype. These ideas are useful when we come across novel phenomena or in situations where there is ambiguity as to the nature of cell death, i.e., Alzheimer’s disease (AD), where the earliest perceptible event is the presence of oxidative stress (4,5). Indeed, the presence of oxidative stress markers in AD parallels neuronal susceptibility to cell death in AD (4,6,7). Here we will review methods to detect both the proximal event (oxidative stress) as well as the most distal event (cell death) in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sperandio, S., de Belle, I., and Bredesen, D. E. (2000) An alternative, non-apoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA 97, 14,376–14,381.

    Article  PubMed  CAS  Google Scholar 

  2. de Boer, R. A., van Veldhuisen, D. J., van der Wijk, J., et al. (2000) Additional use of immunostaining for active caspase 3 and cleaved actin and PARP fragments to detect apoptosis in patients with chronic heart failure. J. Card. Fail 6, 330–337.

    Article  PubMed  Google Scholar 

  3. Ratel, D., Boisseau, S., Nasser, V., Berger, F., and Wion, D. (2001) Programmed cell death or cell death programme? That is the question. J. Theor. Biol. 208, 385–386.

    Article  PubMed  CAS  Google Scholar 

  4. Nunomura, A., Perry, G., Pappolla, M. A., et al. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci. 19, 1959–1964.

    PubMed  CAS  Google Scholar 

  5. Nunomura, A., Perry, G., Aliev, G., et al. (2001) Oxidative damage is the earliest event in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 60, 759–767.

    PubMed  CAS  Google Scholar 

  6. Smith, M. A., Harris, P. L. R., Sayre, L. M., Beckman, J. S., and Perry, G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17, 2653–2657.

    PubMed  CAS  Google Scholar 

  7. Sayre, L. M., Zelasko, D. A., Harris, P. L. R., Perry, G., Salomon, R. G., and Smith, M. A. (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J. Neurochem. 68, 2092–2097.

    Article  PubMed  CAS  Google Scholar 

  8. Bancher, C., Lassmann, H., Breitschopf, H., and Jellinger, K. A. (1997) Mechanisms of cell death in Alzheimer’s disease. J. Neural Transm. Suppl. 50,141–152.

    Google Scholar 

  9. Jellinger, K. A. and Bancher, C. (1998) Neuropathology of Alzheimer’s disease: a critical update. J. Neural Transm. Suppl. 54, 77–95.

    PubMed  CAS  Google Scholar 

  10. Perry, G., Nunomura, A., Lucassen, P., Lassmann, H., and Smith, M. A. (1998) Apoptosis and Alzheimer’s disease (Letter). Science 282, 1268–1269.

    Article  PubMed  CAS  Google Scholar 

  11. Perry, G., Nunomura, A., and Smith, M. A. (1998) A suicide note from Alzheimer disease neurons? (News and Views). Nature Med. 4, 897–898.

    Article  PubMed  CAS  Google Scholar 

  12. Slater, A. F., Stefan, C., Nobel, I., van den Dobbelsteen, D. J., and Orrenius, S. (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol. Lett. 82-83, 149–153.

    Article  PubMed  CAS  Google Scholar 

  13. Yankner, B. A. (1996) New clues to Alzheimer’s disease: unraveling the roles of amyloid and tau. Nature Med. 2, 850–852.

    Article  PubMed  CAS  Google Scholar 

  14. Vander Heiden, M. G., Chandel, N. S., Li, X. X., Schumacker, P. T., Colom-bini, M., and Thompson, C. B. (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl. Acad. Sci. USA 97, 4666–4671.

    Article  Google Scholar 

  15. Mark, R. J., Lovell, M. A., Markesbery, W. R., Uchida, K., and Mattson, M. P. (1997) A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J. Neurochem. 68, 255–264.

    Article  PubMed  CAS  Google Scholar 

  16. Deng, G., Pike, C. J., and Cotman, C. W. (1996) Alzheimer-associated pre-senilin-2 confers increased sensitivity to apoptosis in PC12 cells. FEBS Lett. 397, 50–54.

    Article  PubMed  CAS  Google Scholar 

  17. Anderson, A. J., Su, J. H., and Cotman, C. W. (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreac-tivity, relationship to brain area, and effect of postmortem delay. J. Neurosci. 16, 1710–1719.

    PubMed  CAS  Google Scholar 

  18. Cotman, C. W. and Su, J. H. (1996) Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol. 6, 493–506.

    Article  PubMed  CAS  Google Scholar 

  19. Tsang, S. Y., Tam, S. C., Bremner, I., and Burkitt, M. J. (1996) Research communication copper-1,10-phenanthroline induces internucleosomal DNA fragmentation in HepG2 cells, resulting from direct oxidation by the hydroxyl radical. Biochem. J. 317, 13–16.

    PubMed  CAS  Google Scholar 

  20. Su, J. H., Deng, G., and Cotman, C. W. (1997) Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer’s disease brain. Brain Res. 774, 193–199.

    Article  PubMed  CAS  Google Scholar 

  21. Stadelmann, C., Bruck, W., Bancher, C., Jellinger, K., and Lassmann, H. (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J. Neuropathol. Exp. Neurol. 57 456–464.

    Article  PubMed  CAS  Google Scholar 

  22. Schulze-Osthoff, K., Walczak, H., Droge, W., and Krammer, P. H. (1994) Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol. 127, 15–20.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, G., Gurtu, V., Kain, S. R., and Yan, G. (1997) Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23, 525–531.

    PubMed  CAS  Google Scholar 

  24. Mesner, P. W. Jr. and Kaufmann, S. H. (1997) Methods utilized in the study of apoptosis. Adv. Pharmacol. 41:57–87.

    Article  PubMed  CAS  Google Scholar 

  25. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    Article  PubMed  CAS  Google Scholar 

  26. Tateyama, H., Tada, T., Hattori, H., Murase, T., Li, W.-X., and Eimoto, T. (1998) Effects of prefixation and fixation times on apoptosis detection by in situ end-labeling of fragmented DNA. Arch. Pathol. Lab. Med. 122, 252–255.

    PubMed  CAS  Google Scholar 

  27. Kockx, M. M., Muhring, J., Knaapen, M. W. M., and deMeyer, G. R. Y. (1998) RNA synthesis and splicing interferes with DNA in situ end labeling techniques used to detect apoptosis. Am. J. Pathol. 152, 885–888.

    PubMed  CAS  Google Scholar 

  28. Nakamura, M., Yagi, H., Ishii, T., et al. (1997) DNA fragmentation is not the primary event in glucocorticoid-induced thymocyte death in vivo. Eur. J. Immunol. 27, 999–1004.

    Article  CAS  Google Scholar 

  29. Willingham, M. C. (1999) Cytochemical methods for the detection of apoptosis. J. Histochem. Cytochem. 47, 1101–1109.

    Article  PubMed  CAS  Google Scholar 

  30. Raina, A. K., Hochman, A., Zhu, X., et al. (2001) Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol. 101, 305–310.

    PubMed  CAS  Google Scholar 

  31. Stennicke, H. R., Jurgensmeier, J. M., Shin, H., et al. (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273, 27,084–27,090.

    Article  PubMed  CAS  Google Scholar 

  32. Cohen, G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16.

    PubMed  CAS  Google Scholar 

  33. Trucco, C., Oliver, F. J., de Murcia, G., and Menissier-de Murcia, J. (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res. 26, 2644–2649.

    Article  PubMed  CAS  Google Scholar 

  34. Roth, K. A., Kuan, C.-Y., Haydar, T. F., et al. (2000) Epistatic and independent functions of caspase-3 and Bcl-XL in developmental programmed cell death. Proc. Natl. Acad. Sci. USA 97, 466–471.

    Article  PubMed  CAS  Google Scholar 

  35. Selznick, L. A., Holtzman, D. M., Han, B. H., et al. (1999) In situ immuno-detection of neuronal caspase-3 activation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 1020–1026.

    CAS  Google Scholar 

  36. Stadelmann, C., Deckwerth, T. L., Srinivasan, A., et al. (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am. J. Pathol. 155, 1459–1466.

    Article  PubMed  CAS  Google Scholar 

  37. Gervais, F. G., Xu, D., Robertson, G. S., et al. (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97, 395–406.

    Article  PubMed  CAS  Google Scholar 

  38. Pike, C. J. (1999) Estrogen modulates neuronal Bcl-xL expression and beta-amyloid-β-induced apoptosis: relevance to Alzheimer’s disease. J. Neuro-chem. 72, 1552–1563.

    Google Scholar 

  39. Srinivasula, S. M., Hegde, R., Saleh, A., et al. (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/ DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.

    Article  PubMed  CAS  Google Scholar 

  40. Torp, R., Su, J. H., Deng, G., and Cotman, C. W. (1998) GADD45 is induced in Alzheimer’s disease, and protects against apoptosis in vitro. Neurobiol Disease 5, 245–252.

    Article  CAS  Google Scholar 

  41. Martins, L. M., Kottke, T. J., Kaufmann, S. H., and Earnshaw, W. C. (1998) Phosphorylated forms of activated caspases are present in cytosol from HL-60 cells during etoposide-induced apoptosis. Blood 92, 3042–3049.

    Google Scholar 

  42. Smith, M. A., Perry, G., Richey, P. L., et al. (1996) Oxidative damage in Alzheimer’s. Nature 382, 120–121.

    Article  PubMed  CAS  Google Scholar 

  43. Hampton, M. B., Fadeel, B., and Orrenius, S. (1998) Redox regulation of the caspases during apoptosis. Ann. N.Y. Acad. Sci. 854, 328–335.

    Article  PubMed  CAS  Google Scholar 

  44. LeBlanc, A., Liu, H., Goodyer, C., Bergeron, C., and Hammond, J. (1999) Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J. Biol. Chem. 274, 23,426–23,436.

    Article  PubMed  CAS  Google Scholar 

  45. Lassmann, H., Bancher C., Breitschopf, H., et al. (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol..89, 35–41.

    Article  CAS  Google Scholar 

  46. Lucassen, P. J., Chung, W. C., Vermeulen, J. P., Van Lookeren Campagne, M., Van Dierendonck, J. H., and Swaab, D. F. (1995) Microwave-enhanced in situ end-labeling of fragmented DNA: parametric studies in relation to postmortem delay and fixation of rat and human brain. J. Histochem. Cyto-chem. 43, 1163–1171.

    Article  CAS  Google Scholar 

  47. Lucassen, P. J., Chung, W. C., Kamphorst, W., and Swaab, D. F. (1997) DNA damage distribution in the human brain as shown by in situ end labeling; area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology. J. Neuropathol. Exp. Neurol. 56, 887–900.

    Article  PubMed  CAS  Google Scholar 

  48. Sheng, J. G., Mrak, R. E., and Griffin, W. S. (1998) Progressive neuronal DNA damage associated with neurofibrillary tangle formation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 323–328.

    Article  PubMed  CAS  Google Scholar 

  49. Sheng, J. G., Zhou, X. Q., Mrak, R. E., and Griffin, W. S. (1998) Progressive neuronal injury associated with amyloid plaque formation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 714–717.

    Article  PubMed  CAS  Google Scholar 

  50. Slivka, A., Mytilineou, C., and Cohen, G. (1987) Histochemical evaluation of glutathione in brain. Brain Res. 409, 275–284.

    Article  PubMed  CAS  Google Scholar 

  51. Stadtman, E. R. (1992) Protein oxidation and aging. Science 257, 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  52. Stadtman, E. R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 62, 797–821.

    Article  PubMed  CAS  Google Scholar 

  53. Beckman, J. S. (1996) Oxidative damage and tyrosine nitration from peroxy-nitrite. Chem. Res. Toxicol. 9, 836–844.

    Google Scholar 

  54. Alvarez, B., Rubbo, H., Kirk, M., Barnes, S., Freeman, B. A., and Radi, R. (1996) Peroxynitrite-dependent tryptophan nitration. Chem. Res. Toxicol. 9, 390–396.

    Google Scholar 

  55. Monnier, V. M. and Cerami, A. (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211, 491–493.

    Article  PubMed  CAS  Google Scholar 

  56. Sayre, L. M., Sha, W., Xu, G., et al. (1996) Immunochemical evidence supporting 2-pentylpyrrole formation on proteins exposed to 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 9, 1194–1201.

    Google Scholar 

  57. Itakura K., Uchida, K., and Osawa, T. (1996) A novel fluorescent malondi-aldehyde-lysine adduct. Chem. Phys. Lipids 84, 75–79.

    Article  CAS  Google Scholar 

  58. Sakurai, T. and Tsuchiya, S. (1988) Superoxide production from nonenzy-matically glycated protein. FEBS Lett. 236, 406–410.

    Article  PubMed  CAS  Google Scholar 

  59. Beckman, J. S., Ye, Y. Z., Anderson, P. G., et al. (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohisto-chemistry Biol. Chem. Hoppe-Seyler 375, 81–88.

    Article  Google Scholar 

  60. Sell, D. R. and Monnier, V. M. (1989) Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J. Biol. Chem. 264, 21,597–21,602.

    PubMed  CAS  Google Scholar 

  61. Xu, G. and Sayre, L. M. (1998) Structural characterization of a 4-hydroxy-2-alkenal-derived fluorophore that contributes to lipoperoxidation-depen-dent protein cross-linking in aging and degenerative disease. Chem. Res. Toxicol. 11, 247–251.

    Article  PubMed  CAS  Google Scholar 

  62. Wells-Knecht, K. J., Brinkmann, E., and Baynes, J. W. (1995) Structural characterization of an imidazolium salt formed from glyoxal and Na-hippuryl-lysine. J. Org. Chem. 60, 6246–6247.

    Article  CAS  Google Scholar 

  63. Miyata, S. and Monnier, V. M. (1992) Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J. Clin. Invest. 89, 1102–1112.

    Article  PubMed  CAS  Google Scholar 

  64. Sayre, L. M., Arora, P. K., Iyer, R. S., and Salomon, R. G. (1993) Pyrrole formation from 4-hydroxynonenal and primary amines. Chem. Res. Toxicol. 6, 19–22.

    Article  PubMed  CAS  Google Scholar 

  65. Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R., and Baynes, J. W. (1995) N epsilon-(carboxymethyl) lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34, 10,872–10,878

    Article  PubMed  CAS  Google Scholar 

  66. Shipanova, I. N., Glomb, M. A., and Nagaraj, R. H. (1997) Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys. 344, 29–36

    Article  PubMed  CAS  Google Scholar 

  67. Smith, M. A., Taneda, S., Richey, P. L., et al. (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA 91, 5710–5714.

    Article  PubMed  CAS  Google Scholar 

  68. Yan, S.-D., Chen, X., Schmidt, A.-M., et al. (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA 91, 7787–7791.

    Article  PubMed  CAS  Google Scholar 

  69. Ledesma, M. D., Bonay, P., Colaco, C., and Avila, J. (1994) Analysis of micro-tubule-associated protein tau glycation in paired helical filaments. J. Biol. Chem. 269, 21,614–21,619.

    PubMed  CAS  Google Scholar 

  70. Perry, G. and Smith, M. A. (1993) Senile plaques and neurofibrillary tangles: what role do they play in Alzheimer’s disease? Clin. Neurosci. 1:199–203.

    Google Scholar 

  71. Trojanowski J. Q., Schmidt M. L., Shin, R.-W., Bramblett, G. T., Goedert, M., and Lee, V. M.-Y. (1993) PHF-τ (A68): from pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer’s disease. Clin. Neurosci. 1, 184–191.

    Google Scholar 

  72. Smith, M. A., Sayre, L. M., Anderson, V. E., et al. (1998) Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem. 46, 731–735.

    Article  PubMed  CAS  Google Scholar 

  73. Montine, K. S., Kim, P. J., Olson, S. J., Markesbery, W. R., and Montine, T. J. (1997) 4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. J. Neuropathol. Exp. Neurol. 56, 866–871.

    Article  PubMed  CAS  Google Scholar 

  74. Smith, M. A., Kutty, R. K., Richey, P. L., et al. (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am. J. Pathol. 145, 42–47.

    PubMed  CAS  Google Scholar 

  75. Maines, M. D. (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557–2568.

    PubMed  CAS  Google Scholar 

  76. Premkumar, D. R. D., Smith, M. A., Richey, P. L., et al. (1995) Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J. Neurochem. 65, 1399–1402.

    Article  PubMed  CAS  Google Scholar 

  77. Takeda, A., Perry, G., Abraham, N. G., et al. (2000) Overexpression of heme oxygenase in neuronal cells, the possible interaction with tau. J. Biol. Chem. 275, 5395–5399.

    Article  PubMed  CAS  Google Scholar 

  78. Takeda, A., Smith, M. A., Avila, J., et al. (2000) In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J. Neurochem. 75, 1234–1241.

    Article  PubMed  CAS  Google Scholar 

  79. Arrasate, M., Perez, M., Valpuesta, J. M., and Avila, J. (1997) Role of glycos-aminoglycans in determining the helicity of paired helical filaments. Am. J. Pathol. 151, 1115–1122.

    PubMed  CAS  Google Scholar 

  80. Zhu, X., Rottkamp, C. A., Boux, H., Takeda, A., Perry, G., and Smith, M. A. (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress and cell cycle-related events in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 880–888.

    PubMed  CAS  Google Scholar 

  81. Zhu, X., Raina, A. K., Rottkamp, C. A., et al. (2001) Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J. Neurochem. 76, 435–441.

    Article  PubMed  CAS  Google Scholar 

  82. Raina, A. K., Zhu, X., Rottkamp, C. A., Monteiro, M., Takeda, A., and Smith, M. A. (2000) Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J. Neurosci. Res. 61, 128–133.

    Article  PubMed  CAS  Google Scholar 

  83. Qian, Z. M. and Wang, Q. (1998) Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res. Rev. 27, 257–267.

    Article  PubMed  CAS  Google Scholar 

  84. Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., and Markesbery, W. R. (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52.

    Article  PubMed  CAS  Google Scholar 

  85. Smith, M. A., Harris, P. L. R., Sayre, L. M., and Perry, G. (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA 94, 9866–9868.

    Article  PubMed  CAS  Google Scholar 

  86. Perez, M., Valpuesta, J. M., de Garcini, E. M., et al. (1998) Ferritin is associated with the aberrant tau filaments present in progressive supranuclear palsy. Am. J. Pathol. 152, 1531–1539.

    PubMed  CAS  Google Scholar 

  87. Rottkamp, C. A., Raina, A. K., Zhu, X., et al. (2001) Redox-active iron mediates amyloid-β toxicity. Free Radical Biol. Med. 30, 447–450.

    Article  CAS  Google Scholar 

  88. Sayre, L. M., Perry, G., Harris, P. L. R., Liu, Y., Schubert, K. A., and Smith, M. A. (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J. Neurochem. 74, 270–279.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Raina, A.K. et al. (2002). Apoptotic and Oxidative Indicators in Alzheimer’s Disease. In: LeBlanc, A.C. (eds) Apoptosis Techniques and Protocols. Neuromethods, vol 37. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-188-4:225

Download citation

  • DOI: https://doi.org/10.1385/1-59259-188-4:225

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-012-0

  • Online ISBN: 978-1-59259-188-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics