Skip to main content

Detection and Analysis of Synaptosis

  • Protocol
Apoptosis Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 37))

  • 500 Accesses

Abstract

Essentially three modes of synaptic elimination have been described (1): (1) loss of synapses in synaptically connected neurons following physiological neuron death during development or hormonally driven reorganization; (2) process (generally axonal) retraction and proteolytic degradation of presynaptic elements involving lysosomal upregulation and autophagy; (3) elimination of intact nerve terminals by glial phagocytosis (“synaptic stripping”), notably in the facial nucleus as a retrograde transneuronal effect following axotomy-here microglial cells play a major role (2,3). Similar phagocytosis of intact terminals can be performed by protoplasmic astrocytes as described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolff, J. R. and Missler, M. (1993) Synaptic remodelling and elimination as integral processes of synaptogenesis. APMIS Suppl. 101, 9–23.

    Google Scholar 

  2. Blinzinger, K. and Kreutzberg, G. (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z. Zellforsch 85, 145–157.

    Article  PubMed  CAS  Google Scholar 

  3. Graeber, M. B., Bise, K., and Mehraein, P. (1993) Synaptic stripping in the human facial nucleus. Acta Neuropathol. 86, 179–181.

    Article  PubMed  CAS  Google Scholar 

  4. Stollberg, J. (1995) Synapse elimination, the size principle, and hebbian synapses. J. Neurobiol. 26, 273–282.

    Article  PubMed  CAS  Google Scholar 

  5. Chang, Q. and Balice-Gordon, R. J. (1997) Nip and tuck at the neuromuscular junction: a role for proteases in developmental synapse elimination. Bioessays 19, 271–275.

    Article  PubMed  CAS  Google Scholar 

  6. Adams, I. and Jones, D. G. (1982) Synaptic remodelling and astrocytic hypertrophy in rat cerebral cortex from early to late adulthood. Neurobiol. Aging 3, 179–186.

    Article  PubMed  CAS  Google Scholar 

  7. Adams, I. (1987) Comparison of synaptic changes in the precentral and postcentral cerebral cortex of aging humans: a quantitative ultrastructrual study. Neurobiol. Aging 8, 203–212.

    Article  PubMed  CAS  Google Scholar 

  8. Terry, R. D., Masliah, E., Salmon, D. P., et al. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  9. Barron, K. D. (1975) Ultrastructural changes in dendrites of central neurons during axon reaction. Adv. Neurol. 12, 381–398.

    PubMed  CAS  Google Scholar 

  10. Obata, H. L., Kubo, S., Kinoshita, H., Murabe, Y., and Ibata, Y. (1981) The effect of small doses of kainic acid on the area CA3 of the hippocampal formation. An electron microscopic study. Arch. Histol. Jap. 44, 135–149.

    Article  PubMed  CAS  Google Scholar 

  11. Scheff, S. W. and Price, D. A. (1993) Synapse loss in the temporal lobe in Alzheimer’s disease. Ann. Neurol. 33, 190–199.

    Article  PubMed  CAS  Google Scholar 

  12. Scheff, S. W., Dekosky, S. T., and Price, D. A. (1990) Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol. Aging 11, 29–37.

    Article  PubMed  CAS  Google Scholar 

  13. Brun, A., Liu, X., and Erikson, C. (1995) Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer’s disease and in frontal lobe degeneration. Neurodegeneration 4, 171–177.

    Article  PubMed  CAS  Google Scholar 

  14. Samuel, W. O., Masliah, E., Hill, L. R., Butters, N., and Terry, R. (1994) Hippocampal connectivity and Alzheimer’s dementia: effects of synapse loss and tangle frequency in a two-component model. Neurology 44, 2081–2088.

    PubMed  CAS  Google Scholar 

  15. Sze, C. I., Troncoso, J. C., Kawas, C., Mouton, P., Price, D. L., and Martin, L. J. (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 56, 933–944.

    Article  PubMed  CAS  Google Scholar 

  16. Harigaya, Y., Shoji, M., Shirao, T., and Hirai, S. (1996) Disappearance of actin-binding protein, drebrin, from hippocampal synapses in Alzheimer’s disease. J. Neurosci. Res. 43, 87–92.

    Article  PubMed  CAS  Google Scholar 

  17. Wakabayashi, K., Honer, W. G., and Masliah, E. (1994) Synapse asterations in the hippocampal-entorhinal formation in alzheimer’s disease with and without Lewy body disease. Brain Res. 667, 24–32.

    Article  PubMed  CAS  Google Scholar 

  18. Callahan, L. M. and Coleman, P. D. (1995) Neurons bearing neurofibrillary tangles are responsible for selected synaptic deficits. Neurobiol. Aging 16, 311–314.

    Article  PubMed  CAS  Google Scholar 

  19. Su, J. H., Deng, G. M., and Cotman, C. W. (1997) Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer’s disease brain. Brain Res. 774, 193–199.

    Article  PubMed  CAS  Google Scholar 

  20. Su, J. H., Satou, T., Anderson, A. J., and Cotman, C. W. (1996) Up-regulation of Bcl-2 is associated with neuronal DNA damage in Alzheimer’s disease.Neuroreport 7, 437–440.

    Article  PubMed  CAS  Google Scholar 

  21. Masliah, E., Hansen, L., Albright, T., Mallory, M., and Terry, R. D. (1991) Immunoelectron microscopic study of synaptic pathology in Alzheimer’s disease. Acta Neuropathol. 81, 428–433.

    Article  PubMed  CAS  Google Scholar 

  22. Shimohama, S., Kamiya, S., Taniguchi, T., Akagawa, K., and Kimura, J. (1997) Differential involvement of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 236, 239–242.

    Article  PubMed  CAS  Google Scholar 

  23. Sze, C. I., Bi, H., Kleinschmidt-DeMasters, B. K., Filley, C. M., and Martin, L. J. (2000) Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer’s disease brains. J. Neurol. Sci. 175, 81–90.

    Article  PubMed  CAS  Google Scholar 

  24. Naito, M., Nagashima, K., Mashima, T., and Tsuro, T. (1997) Phosphatidylserine externalization is a downstream event of interleukin-1β-converting enzyme family protease activation during apoptosis. Blood 89, 2060–2066.

    PubMed  CAS  Google Scholar 

  25. Fadok, V. A., Bratton, D. L., Rose, D. M., Pearson, A., Ezekewitz, R. A., and Henson, P. M. (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90.

    Article  PubMed  CAS  Google Scholar 

  26. Sambrano, G. R. and Steinberg, D. (1995) Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc. Natl. Acad. Sci. USA 92, 1396–1400.

    Article  PubMed  CAS  Google Scholar 

  27. Yang, F., Sun, X., Beech, W., et al. (1998) Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and neurons and plaque associated neurons and microglia in Alzheimer’s disease. Am. J. Pathol. 152, 379–389.

    PubMed  CAS  Google Scholar 

  28. Cole, G. M., Yang, F., Chen, P. P., Frautschy, S. A., Hsiao, K. (1999) Caspase activation in dystrophic neurites in Alzheimer’s disease and aged huAPPsw transgenic mice, in Alzheimer’s Disease and Related Disorders (Iqbal, K., zSwaab, D. F., Winblad, B., and Wisniewski, H. M., eds.), Wiley, West Sussex, UK, pp. 363–370.

    Google Scholar 

  29. Peters, A., Palay, S. L., and Webster, H. D. (1991) The Fine Structure of the Nervous System,Oxford University Press, New York.

    Google Scholar 

  30. Mack, A., Furmann, C., and Hacker, G. (2000) Detection of caspase-activation in intact lymphoid cells using standard caspase substrates and inhibitors.J. Immunol. Meth. 241, 19–31.

    Article  CAS  Google Scholar 

  31. Li, J., Bombeck, C. A., Yang, S., Kim, Y. M., and Billiar, T. R. (1999) Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J. Biol. Chem. 274, 17,325–17,333

    Article  PubMed  CAS  Google Scholar 

  32. Schulz, J. B., Weller, M., Matthews, R. T., et al. (1998) Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. Cell Death Differ. 5, 847–857.

    Article  PubMed  CAS  Google Scholar 

  33. Teter, B., Yang, F., Wasterlain, C., et al. (1996) Cleavage site-specific cell death switch antibody labels Alzheimer’s lesions. Soc. Neurosci. 22, 258.

    Google Scholar 

  34. Bozyczko-Coyne, D., Dobrzanski, P., Meyer, S., et al. (1996) ICE-related proteases involved in growth factor deprivation-induced neuronal apoptosis.Soc. Neurosci. 22, 566

    Google Scholar 

  35. Siman, R., Bozycyczko-Coyne, D., Meyer, S., and Bhat, R. V. (1999) Immunolocalization of capsase proteolysis in situ: evidence for widespread caspasemediated apoptosis of neurons and glia in the postnatal rat brain. Neuroscience 92, 1425–1442.

    Article  PubMed  CAS  Google Scholar 

  36. Srinivasan, A., Roth, K. A., Sayers, R. O., et al. (1998) In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ. 5, 1004–1016.

    Article  PubMed  CAS  Google Scholar 

  37. LeBlanc, A., Liu, H., Goodyer, C., Bergeron, C., and Hammond, J. (1999) Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J. Biol. Chem. 274, 23,426–23,436.

    Article  PubMed  CAS  Google Scholar 

  38. Suurmeijer, A. J. H., van der Wijk, J., van Veldhuisen, D. J., Yang, F., and Cole, G. M. (1999) Fractin immunostaining for the detection of apoptotic cells and apoptotic bodies in formalin-fixed and paraffin-embedded tissue. Lab. Invest. 79, 619–620.

    PubMed  CAS  Google Scholar 

  39. Rossiter, J. P., Anderson, L. L., Yang, F., and Cole, G. M. (2000) Caspasecleaved actin (fractin) immunolabelliing of Hirano bodies. Neuropathol. Appl. Neurobiol. 26, 342–346.

    Article  PubMed  CAS  Google Scholar 

  40. Glazner, G. W., Chan, S. L., Lu, C., and Mattson, M. P. (2000) Caspasemediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649.

    PubMed  CAS  Google Scholar 

  41. Aronica, E., Dickson, D. W., Kress, Y., Morrison, J. H., and Zukin, R. S. (1998) Non-plaque dystrophic dendrites in Alzheimer hippocampus: a new pathological structure revealed by glutamate receptor immunocytochemistry. Neuroscience 82, 979–991.

    Article  PubMed  CAS  Google Scholar 

  42. Hsia, A. Y., Masliah, E., McConlogue, L., et al. (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA 96, 3228–3233.

    Article  PubMed  CAS  Google Scholar 

  43. Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., and Hyman, B. T. (1997) APPsw transgenic mice develop age-related Aβ deposits and neuropil abnormalities, but no neuronal loss in CA1. J. Neuropathol. Exp. Neurol. 56, 965–973.

    Article  PubMed  CAS  Google Scholar 

  44. Steiner, H., Capell, A., Pesold, B., et al. (1998) Expression of Alzheimer’s disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J. Biol. Chem. 273, 32,322–32,331.

    Article  PubMed  CAS  Google Scholar 

  45. Tesco, G., Kim, T. W., Diehlmann, A., Beyreuther, K., and Tanzi, R. E. (1998) Abrogation of the presenilin 1 /beta-catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation. J. Biol. Chem. 273, 33,909–33,914.

    Article  PubMed  CAS  Google Scholar 

  46. Gervais, F. G., Xu, D., Robertson, G. S., et al. (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic A beta peptide. Cell 97, 395–406.

    Article  PubMed  CAS  Google Scholar 

  47. Lu, D. C., Rabizadeh, S., Chandra, S., et al. (2000) A second cytotoxic proteolytic peptide derived from amyloid β-protein precusor. Nature Med. 6, 397–404.

    Article  PubMed  CAS  Google Scholar 

  48. Mattson, M. P., Keller, J. N., and Begley, J. G. (1998) Evidence for synaptic apoptosis. Exp. Neurol. 151, 35–48.

    Article  Google Scholar 

  49. Mattson, M. P., Partin, J., and Begley, J. G. (1998) Amyloid β-peptide induces apoptosis-related events in synapses and dendrites. Brain Res. 807, 161–176.

    Article  Google Scholar 

  50. Campenot, R. B. (1982) Development of sympathetic neurons in compartmentalized cultures: II. Local control of neurite survival by nerve growth factor. Devel. Biol. 93, 13–21.

    Article  CAS  Google Scholar 

  51. Campenot, R. B. (1994) NGF and the local control of nerve terminal growth. J.Neurobiol. 6, 599–611.

    Article  Google Scholar 

  52. Ivins, K. J., Bui, E. T. N., and Cotman, C. W. (1998) β-Amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis. Neurobiol. Dis. 5, 365–378.

    Article  PubMed  CAS  Google Scholar 

  53. Finn, J. T., Weil, M., Fabienne, A., Siman, R., Srinivasan, A., and Raff, M. C. (2000) Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J. Neurosci. 20, 1333–1341.

    PubMed  CAS  Google Scholar 

  54. Bahr, B. A., Hoffman, K. B., Vanderklish, P. W., et al. (1996) The Alzheimer Aβ1-42 peptide induces CA1 specific Aβ immunostaining and synaptic decay in hippocampal slice cultures. Soc. Neurosci. 26 Annual 22, 480.12.

    Google Scholar 

  55. Bahr, B. A., Hoffman, K. B., Yang, A. J., Hess, U. S., Glabe, C. G., and Lynch, G. (1997) Amyloid β-protein is selectively internalized by hippocampal field CA1 and causes neurons to accumulate amyloidogenic carboxyterminal APP fragments. Neuron 1, 1–21.

    Google Scholar 

  56. Teter, B., Harris-White, M., Frautschy, S. A., and Cole, G. M. (1999) Role of apolipoprotein E and estrogen in mossy fiber sprouting in hippocampal slice cultures. Neuroscience 91, 1009–1016.

    Article  PubMed  CAS  Google Scholar 

  57. Harris-White, M. E., Teter, B., Chu, T., et al. (1998) Effects of ApoE on Aβ deposition in murine organotypic slice cultures. Soc. Neurosci. 24, β849.3.

    Google Scholar 

  58. Lambert, M. P., Barlow, A. K., Chromy, B. A., et al. (1998) Diffusible, non-fibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins.Proc. Natl. Acad. Sci. USA 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  59. Harris-White, M. E., Frautschy, S. A., Cole, G. M. (1998) Methods for evaluating a slice culture model of Alzheimer’s disease, in Methods in Brain Aging (Timiras, P. and Sternberg, H., eds.), Springer-Verlag, Berlin, pp. 55–65.

    Google Scholar 

  60. Butterfield, D. A., Hensley, K., Harris, M., Mattson, M., and Carney, J. (1994)β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem. Biophys. Res. Commun. 200, 710–715.

    Article  PubMed  CAS  Google Scholar 

  61. Wolf, M. E. and Kapatos, G. (1989) Flow cytometric analysis of rat striatal nerve terminals. J. Neurosci. 9, 94–105.

    Google Scholar 

  62. Wolf, M. E. and Kapatos, G. (1989) Flow cytometric analysis and isolation of permeabilized dopamine nerve terminals. J. Neurosci. 9, 106–114.

    Google Scholar 

  63. Wolf, M. E., Granneman, J. G., and Kapatos, G. (1991) Characterization of the distribution of G alpha o in rat striatal synaptosomes and its colocalization with tyrosine hydroxylase. Synapse 9, 66–74.

    Article  PubMed  CAS  Google Scholar 

  64. Wolf, M. E., LeWitt, P. A., Bannon, M. J., Dragovic, L. J., and Kapatos, G. (1991) Effect of aging on tyrosine hyrdroxylase protein content and the relative number of dopamine nerve terminals in human caudate. J. Neurochem. 56, 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  65. Gylys, K. H., Fein, J. A., and Cole, G. M. (2000) Quantitative characterization of crude synaptosomal fraction (P-2) components by flow cytometry. J. Neurosci. Res. 61, 186–192.

    Article  PubMed  CAS  Google Scholar 

  66. Dodd, P. R., Hardy, J. A., Baig, E. B., et al. (1986) Optimization of freezing, storage, and thawing conditions for the preparation of metabolically active synaptosomes from frozen rat and human brain. Neurochem. Pathol. 4, 177–198.

    Article  PubMed  CAS  Google Scholar 

  67. Gylys, K. H., Fein, J. A., and Cole, G. M. (2000) In vitro activation of caspases in nerve terminals. Age 23, 65.

    Google Scholar 

  68. Wolf, B. B., Goldstein, J. C., Stennicke, H. R., et al. (1999) Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94, 1683–1692.

    PubMed  CAS  Google Scholar 

  69. Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P. (1995) Amyloid β-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+homeostasis and cell death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  70. Lankiewicz, S., Luetjens, C. M., Bui, N. T. K. A. J., et al. (2000) Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J. Biol. Chem. 275, 17,064–17,071.

    Article  PubMed  CAS  Google Scholar 

  71. Squier, M. K., Sehnert, A. J., Sellins, K. S., Malkinson, A. M., Takano, E., and Cohen, J. J. (1999) Calpain and calpastatin regulate neutrophil apoptosis.J. Cell. Physiol. 178, 311–319.

    Article  PubMed  CAS  Google Scholar 

  72. Squier, M. K. and Cohen, J. J. (1999) Calpain, an upstream regulator of thymocyte apoptosis. J. Immunol. 178, 311–319.

    CAS  Google Scholar 

  73. Wang, K. K. W. (2000) Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26.

    Article  PubMed  Google Scholar 

  74. Cheng, A. G., Huang, T., Stracher, A., et al. (1999) Calpain inhibitors protect auditory sensory cells from hypoxia and neurotrophin-withdrawal induced apoptosis. Brain Res. 850, 234–243.

    Article  PubMed  CAS  Google Scholar 

  75. Rami, A., Agarwal, R., Botez, G., and Winckler, J. (2000) mu-calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res. 866, 299–312.

    Article  PubMed  CAS  Google Scholar 

  76. Masliah, E., Iimoto, D., Saitoh, T., Hansen, L. A., and Terry, R. D. (1990) Increased immunoreactivity of brain spectrin in Alzheimer disease: a marker for synapse loss? Brain Res. 531, 36–44.

    Article  PubMed  CAS  Google Scholar 

  77. Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M., and Tsai, L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364.

    Article  PubMed  CAS  Google Scholar 

  78. Grynspan, F., Griffin, W. R., Cataldo, A., Katayama, S., and Nixon, R. A. (1997) Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res. 763, 145–158.

    Article  PubMed  CAS  Google Scholar 

  79. Beckman, K. B. and Ames, B. N. (1998) The free radical theory of aging matures. Physiol. Rev. 78, 548–581.

    Google Scholar 

  80. Perry, G. and Smith, M. A. (1997) A central role for oxidative damage in the pathogenesis and therapeutics of Alzheimer’s disease. Alzheimer’s Res. 2, 319–324.

    Google Scholar 

  81. Brenner, C., Marzo, I., and Kroemer, G. (1998) A revolution in apoptosis: from a nucleocentric to a mitochondriocentric perspective. Exp. Gerontol..33, 543–553.

    Article  PubMed  CAS  Google Scholar 

  82. Keller, J. N., Pang, Z., Geddes, J. W., et al. (1997) Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69, 273–284.

    Article  PubMed  CAS  Google Scholar 

  83. Behl, C., Davis, J. B., Lesley, R., and Schubert, D. (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  84. Butterfield, D. A., Martin, L., Carney, J. M., and Hensley, K. (1996) Aβ(25-35) peptide displays H202-like reactivit towards aqueous Fe2+, nitroxide spin probes, and synaptosomal membrane proteins. Life Sci. 58, 217–228.

    Article  PubMed  CAS  Google Scholar 

  85. Rogers, J., Cooper, N. R., Webster, S., et al. (1992) Complement activation by β-amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 89, 10,016–10,020.

    Article  PubMed  CAS  Google Scholar 

  86. Webster, S., Lue, L. F., Brachova, L., et al. (1997) Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease.Neurobiol. Aging 18, 415–421.

    Article  PubMed  CAS  Google Scholar 

  87. Yang, A. J., Knauer, M., Burdick, D. A., and Glabe, C. (1995) Intracellular Aβ1-42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells. J. Biol. Chem. 270, 14,786–14,792.

    Article  PubMed  CAS  Google Scholar 

  88. Yang, A. J., Chandswangbhuvana, D., Margol, L., and Glabe, C. G. (1998) Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Aβ1-42 pathogenesis. J. Neurosci. Res. 52, 691–698.

    Article  PubMed  CAS  Google Scholar 

  89. Deiss, L. P., Galinka, H., Berissi, H., Cohen, O., and Kimchi, A. (1996) Cathepsin D protease mediates programmed cell death induced by interferon-γ, Fas?APO-1 and TNF-a. EMBO J. 15, 3861–3870.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cole, G.M., Gylys, K. (2002). Detection and Analysis of Synaptosis. In: LeBlanc, A.C. (eds) Apoptosis Techniques and Protocols. Neuromethods, vol 37. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-188-4:177

Download citation

  • DOI: https://doi.org/10.1385/1-59259-188-4:177

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-012-0

  • Online ISBN: 978-1-59259-188-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics