Skip to main content

Monitoring Caspases in Neuronal Cell Death

  • Protocol
Apoptosis Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 37))

  • 347 Accesses

Abstract

Apoptosis is a physiological process that contributes to the establishment and homeostasis of the nervous system. For example, neurons that fail to make the proper connections with their postsynaptic targets die naturally during development due to the lack of sufficient trophic support (1). Cell demise is operated in a wellordered fashion and culminates in the activation of a network of specific proteases, the caspases that execute the death program. Once activated by the apoptotic signal, caspases cleave a myriad of cellular target proteins in a highly specific fashion. As a consequence, the death signal is amplified, and the committed cell systematically dismantled (2). We describe here a practical guide to investigate the involvement of caspases in neuronal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, E. M. J., Chang, J. Y., Koike, T., and Martin, D. P. (1989) Why do neurons die when deprived of trophic factor? Neurobiol. Aging 10, 549–552.

    Article  PubMed  Google Scholar 

  2. Thornberry, N. A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  3. Thornberry, N. A., Rano, T. A., Peterson, E. P., et al. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17, 907–17, 911.

    Article  CAS  Google Scholar 

  4. Uren, A. G., O’Rourke, K., Aravind, L., et al. (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967.

    PubMed  CAS  Google Scholar 

  5. Mittl, P. R., Di Marco, S., Krebs, J. F., et al. (1997) Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-asp-val-ala-asp fluromethyl ketone. J. Biol. Chem. 272, 6539–6547.

    Article  PubMed  CAS  Google Scholar 

  6. Rotonda, J., Nicholson, D. W., Fazil, K. M., et al. (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Biol. 3, 619–625.

    Article  PubMed  CAS  Google Scholar 

  7. Walker, N. P., Talanian, R. V., Brady, K. D., et al. (1994) Crystal structure of the cysteine protease interleukin 1-beta converting enzyme: a (p20/p10)2homodimer. Cell 78, 343–352.

    Article  PubMed  CAS  Google Scholar 

  8. Wilson, K. P., Black, J. A., Kim, E. E., et al. (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370, 270–275.

    Article  PubMed  CAS  Google Scholar 

  9. Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., and Thornberry, N. A. (1998) Inhibition of human caspases by peptide based and macromolecular inhibitors. J. Biol. Chem. 273, 32,608–32,613.

    Article  PubMed  CAS  Google Scholar 

  10. Talanian, R. V., Quinlan, C., Trautz, S., et al. (1997) Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677–9682.

    Article  PubMed  CAS  Google Scholar 

  11. Wolf, B. B. and Green, D. R. (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274, 20,049–20,052.

    Article  PubMed  CAS  Google Scholar 

  12. Chinnaiyan, A. M., O’Rourke, K., Tewari, M., and Dixit, V. M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505–512.

    Article  PubMed  CAS  Google Scholar 

  13. Hofmann, K., Bucher, P., and Tschopp, J. (1997) The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci. 22, 155–156.

    Article  PubMed  CAS  Google Scholar 

  14. Kuida, K., Lippke, J. A., Ku, G., et al. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000–2003.

    Article  PubMed  CAS  Google Scholar 

  15. Wang, S., Miura, M., Jung, Y. K., Zhu, H., Li, E., and Yuan, J. (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509.

    Article  PubMed  CAS  Google Scholar 

  16. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660.

    Article  PubMed  CAS  Google Scholar 

  17. Cohen, G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326, 1–16.

    PubMed  CAS  Google Scholar 

  18. Cryns, V. and Yuan, J. (1998) Proteases to die for. Genes Dev. 12, 1551–1570.

    Article  PubMed  CAS  Google Scholar 

  19. Earnshaw, W. C., Martins, L. M., and Kaufmann, S. H. (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 382–424.

    Article  Google Scholar 

  20. Thornberry, N. A., Bull, H. G., Calaycay, J. R., et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768–774.

    Article  PubMed  CAS  Google Scholar 

  21. Ekert, P. G., Silke, J., and Vaux, D. L. (1999) Caspase inhibitors. Cell Death Diff. 6, 1081–1086.

    Article  CAS  Google Scholar 

  22. Goyal, L. (2001) Cell death inhibition: keeping caspases in check. Cell 104, 805–808.

    Article  PubMed  CAS  Google Scholar 

  23. Hauser, H. P., Bardroff, M., Pyrowolakis, G., and Jentsch, S. (1998) A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J. Cell. Biol. 141, 1415–1422.

    Article  PubMed  CAS  Google Scholar 

  24. Kasof, G. M. and Gomes, B. C. (2001) Livin, a novel inhibitor-of-apoptosis (IAP) family member. J. Biol. Chem. 276, 3238–3246.

    Article  PubMed  CAS  Google Scholar 

  25. Li, F., Ackermann, E. J., Bennett, C. F., et al. (1999) Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat. Cell Biol. 1, 461–466.

    Article  PubMed  CAS  Google Scholar 

  26. Chau, B. N., Cheng, E. H., Kerr, D. A., and Hardwick, J. M. (2000) Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol. Cell 5, 31–40.

    Google Scholar 

  27. Thornberry, N. A., Peterson, E. P., Zhao, J. J., Howard, A. D., Griffin, P. R., and Chapman, K. T. (1994) Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methylketones. Biochemistry 33, 3934–3940.

    Article  PubMed  CAS  Google Scholar 

  28. Margolin, N., Raybuck, S. A., Wilson, K. P., et al. (1997) Substrate and inhibitor specificity of interlukin-1 beta converting enzyme and related caspases. J. Biol. Chem. 272, 7223–7228.

    Article  PubMed  CAS  Google Scholar 

  29. Schotte, P., Declercq, W., Van Huffel, S., Vandenabeele, P., and Beyaert, R. (1999) Non-specific effects of methylketone peptide inhibitors of caspases. FEBS Lett. 442, 117–121.

    Article  PubMed  CAS  Google Scholar 

  30. LeBlanc, A., Liu H., C., Bergeron, C., and Hammond, J. (1999) Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer’s disease. J. Biol. Chem. 274, 23,426–23,436.

    Article  PubMed  CAS  Google Scholar 

  31. LeBlanc, A. (1995) Increased production of 4 kDa amyloid beta peptide in serum deprived human primary neuron cultures: possible involvement of apoptosis. J. Neurosci. 15, 7837–7846.

    PubMed  CAS  Google Scholar 

  32. Harlow, E. and Lane, D. (1999) Staining cells, in Using Antibodies: A Laboratory Manual (Harlow, E. and Lane, D., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 123–125.

    Google Scholar 

  33. Moyse, E. and Michel, D. (1997) Analyses of apoptosis-associated DNA fragmentation, in Apoptosis Techniques and Protocols (Poirier, J., ed.), Humana Press, Totowa, NJ, pp. 133–160.

    Chapter  Google Scholar 

  34. Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T., and van Oers, M. H. (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420.

    PubMed  CAS  Google Scholar 

  35. Zhang, Y., Goodyer, C., and LeBlanc, A. (2000) Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3,-6,-7, and-8. J. Neurosci. 20, 8384–8389.

    PubMed  CAS  Google Scholar 

  36. Samejima, K., Svingen, P. A., Basi, G. S., et al. (1999) Caspase-mediated cleavage of DNA topoisomerase I at unconventional sites during apoptosis. J. Biol. Chem. 274, 4335–4340.

    Article  PubMed  CAS  Google Scholar 

  37. Lazebnik, Y. A., Cole, S., Cooke, C. A., Nelson, W. G., and Earnshaw, W. C. (1993) Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis. J. Cell Biol. 123, 7–22.

    Article  PubMed  CAS  Google Scholar 

  38. Rao, L., Perez, D., and White, E. (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135, 1441–155.

    Article  PubMed  CAS  Google Scholar 

  39. Duband-Goulet, I., Courvalin, J. C., and Buendia, B. (1998) LBR, a chromatin and lamin binding protein from the inner nuclear membrane, is proteolyzed at late stages of apoptosis. J. Cell Sci. 111, 1441–1451.

    Google Scholar 

  40. Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S. (1995) Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res. 55, 2737–2742.

    PubMed  CAS  Google Scholar 

  41. Hirata, H., Takahashi, A., Kobayashi, S., et al. (1998) Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J. Exp. Med. 187, 587–600.

    Article  PubMed  CAS  Google Scholar 

  42. Caulin, C., Salvesen, G. S., and Oshima, R. G. (1997) Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J. Cell Biol. 138, 1379–1394.

    Article  PubMed  CAS  Google Scholar 

  43. Van deCraen, M., Berx, G., Van den Brande, I., Fiers, W., Declercq, W., and Vandenabeele, P. (1999) Proteolytic cleavage of beta-catenin by caspases: an in vitro analysis. FEBS Lett. 458, 167–170.

    Article  PubMed  Google Scholar 

  44. Xanthoudakis, S., Roy, S., Rasper, D., et al. (1999) Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 18, 2049–2056.

    Article  PubMed  CAS  Google Scholar 

  45. Barnes, N. Y., Li, L., Yoshikawa, K., Schwartz, L. M., Oppenheim, R. W., and Milligan, C. E. (1998) Increased production of amyloid precursor pro-tein provides a substrate for caspase-3 in dying motoneurons. J. Neurosci. 18, 5869–5880.

    Google Scholar 

  46. Gervais, F. G., Xu, D., Robertson, G. S., et al. (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97, 395–406.

    Article  PubMed  CAS  Google Scholar 

  47. Pellegrini, L., Passer, B. J., Tabaton, M., Ganjei, J. K., and D’Adamio, L. (1999) Alternative, non-secretase processing of Alzheimer’s beta-amyloid precursor protein during apoptosis by caspase-6 and-8. J. Biol. Chem. 274, 21,011–21,016.

    Article  PubMed  CAS  Google Scholar 

  48. Weidemann, A., Paliga, K., D rrwang, U., Reinhard, F. B., Schuckert, O., Evin, G., and Masters, C. L. (1999) Proteolytic processing of the Alzheimer’s disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. J. Biol. Chem. 274, 5823–5829.

    Article  PubMed  CAS  Google Scholar 

  49. Takahashi, A., Musy, P. Y., Martins, L. M., Poirier, G. G., Moyer, R. W., and Earnshaw, W. C. (1996) CrmA/SPI-2 inhibition of an endogenous ICErelated protease responsible for lamin A cleavage and apoptotic nuclear fragmentation. J. Biol. Chem. 271, 32,487–32,490.

    Article  PubMed  CAS  Google Scholar 

  50. Stennicke, H. R. and Salvesen, G. S. (1997) Biochemical characteristics of caspases-3,-6,-7, and-8. J. Biol. Chem. 272, 25,719–25,723.

    Article  PubMed  CAS  Google Scholar 

  51. Harlow, E. and Lane, D. (1999) Immunoprecipitation, in Using Antibodies: A Laboratory Manual (Harlow, E. and Lane, D., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 221–266.

    Google Scholar 

  52. Cheng, E. H., Kirsch, D. G., Clem, R. J., et al. (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968.

    Article  PubMed  CAS  Google Scholar 

  53. Tomicic, M. T. and Kaina, B. (2001) Hamster Bcl-2 protein is cleaved in vitro and in cells by caspase-9 and caspase-3. Biochem. Biophys. Res. Commun. 281, 404–408.

    Article  PubMed  CAS  Google Scholar 

  54. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.

    Article  PubMed  CAS  Google Scholar 

  55. Casciola-Rosen, L. A., Anhalt, G. J., and Rosen, A. (1995) DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182, 1625–1634.

    Article  PubMed  CAS  Google Scholar 

  56. Alnemri, E. S., Fernandes-Alnemri, T., and Litwack, G. (1995) Cloning and expression of four novel isoforms of human interleukin-1 beta converting enzyme with different apoptotic activities. J. Biol. Chem. 270, 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  57. Duan, H., Orth, K., Chinnaiyan, A. M., et al. (1996) ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B.J. Biol.Chem. 271, 16,720–16,724.

    Article  PubMed  CAS  Google Scholar 

  58. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G. (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53,3976–3985.

    Google Scholar 

  59. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347.

    Article  PubMed  CAS  Google Scholar 

  60. Donato, N. J. and Perez M. (1998) Tumor necrosis factor-induced apoptosis stimulates p53 accumulation and p21WAF1 proteolysis in ME-180 cells. J. Biol. Chem. 273, 5067–5072.

    Article  PubMed  CAS  Google Scholar 

  61. Levkau, B., Koyama, H., Raines, E. W., et al. (1998) Cleavage of p21Cip1/ Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol. Cell. 1, 553–563.

    Google Scholar 

  62. Waterhouse, N., Kumar, S., Song, Q., et al. (1996) Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1beta-converting enzyme-like proteases in apoptosis. J. Biol. Chem. 271, 29,335–29,341.

    Article  PubMed  CAS  Google Scholar 

  63. Tewari, M., Quan, L. T., O’Rourke, K., et al. (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–809.

    Article  PubMed  CAS  Google Scholar 

  64. Widmann, C., Gibson, S., and Johnson, G. L. (1998) Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J. Biol. Chem. 273, 7141–7147.

    Article  PubMed  CAS  Google Scholar 

  65. Janicke, R. U., Walker, P. A., Lin, X. Y., and Porter, A. G. (1996) Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J. 15, 6969–6978.

    PubMed  CAS  Google Scholar 

  66. Zhou, B. B., Li, H., Yuan, J., and Kirschner, M. W. (1998) Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc. Natl. Acad. Sci. USA 95, 6785–6790.

    Google Scholar 

  67. Kayalar, C., Örd, T., Testa, M. P., Zhong, L. T., and Bredesen, D. E. (1996) Cleavage of actin by interleukin 1-converting enzyme to reverse DNase I inhibition. Proc. Natl. Acad. Sci. USA 93, 2234–2238

    Article  PubMed  CAS  Google Scholar 

  68. Mashima, T., Naito, M., Noguchi, K., Miller, D. K., Nicholson, D. W., and Tsuruo, T. (1997) Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene 14, 1007–1012.

    Article  PubMed  CAS  Google Scholar 

  69. Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184.

    Google Scholar 

  70. Sakahira, H., Enari, M., and Nagata, S. (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96–99.

    Article  PubMed  CAS  Google Scholar 

  71. Janicke, R. U., Ng, P., Sprengart, M. L., and Porter, A. G. (1998) Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273, 15,540–15,545.

    Article  PubMed  CAS  Google Scholar 

  72. Kothakota, S., Azuma, T., Reinhard, C., et al. (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294–298.

    Article  PubMed  CAS  Google Scholar 

  73. Chan, W. H., Yu, J. S., and Yang, S. D. (2000) Apoptotic signalling cascade in photosensitized human epidermal carcinoma A431 cells: involvement of singlet oxygen, c-Jun N-terminal kinase, caspase-3 and p21-activated kinase 2. Biochem. J. 351, 221–232.

    Article  PubMed  CAS  Google Scholar 

  74. Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J. (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell Biol. 3, 346–352.

    Article  PubMed  CAS  Google Scholar 

  75. Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A., and Olson, M. F. (2001) Membrane blebbing during apoptosis results from caspasemediated activation of ROCK I. Nat. Cell Biol. 3, 339–345.

    Google Scholar 

  76. van de Craen, M., de Jonghe, C., vanden Brande, I., et al. (1999) Identification of caspases that cleave presenilin-1 and presenilin-2. Five presenilin-1 (PS1) mutations do not alter the sensitivity of PS1 to caspases. FEBS Lett. 445, 149–154.

    Article  PubMed  Google Scholar 

  77. Chung, C. W., Song, Y. H., Kim, I. K., et al. (2001) Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol. Dis. 8, 162–172.

    Article  PubMed  CAS  Google Scholar 

  78. Goldberg, Y. P., Nicholson, D. W., Rasper, D. M., et al. (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat. Genet. 13, 442–449.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bounhar, Y., Tounekti, O., LeBlanc, A.C. (2002). Monitoring Caspases in Neuronal Cell Death. In: LeBlanc, A.C. (eds) Apoptosis Techniques and Protocols. Neuromethods, vol 37. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-188-4:035

Download citation

  • DOI: https://doi.org/10.1385/1-59259-188-4:035

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-1-58829-012-0

  • Online ISBN: 978-1-59259-188-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics