Skip to main content

Biochemical Assays for Studying Indirect Interactions Between CFTR and the Cytoskeleton

  • Protocol
Cystic Fibrosis Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 70))

  • 852 Accesses

Abstract

One approach for understanding the regulation of CFTR and determining how CFTR regulates the activity of other ion channels is to identify CFTR-associated proteins at the apical membrane of airway epithelia. The development of improved methods for studying protein interactions has led to the identification of cytoskeletal-associated scaffolding proteins involved in organizing plasma membrane microdomains and forming multiprotein complexes important for efficient regulation of ion channels and transporters. Many plasma membrane-associated scaffolding proteins contain one or more PDZ domains, conserved 90-100-amino acid protein interaction modules first described in the postsynaptic density protein PSD95, the Drosophila tumor suppressor dlg-A, and the tight junction protein ZO-1 (reviewed in refs. 1 and 2). PDZ domains typically mediate interactions with the COOH termini of proteins terminating in consensus PDZ-binding sequences (E-S/T-X-V/I), although other types of interaction also occur. While some data suggest that CFTR may bind directly to the actin cytoskeleton (3), recent experiments indicate that CFTR interacts indirectly with the cytoskeleton via subapical scaffolding proteins that contain PDZ domains (4-7). In this chapter we review in vitro binding assays for studying interactions between CFTR and epithelial scaffolding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fanning, A. S. and Anderson, J. M. (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J. Clin. Invest. 103, 767ā€“772.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Kornau, H. C., Seeburg, P. H., and Kennedy, M. B. (1997) Interaction of ion channels and receptor with PDZ domains proteins. Curr. Opin. Neurobiol. 7, 368ā€“373.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Cantiello, H. F. (1996) Role of the active cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator. Exp. Physiol. 81, 505ā€“514.

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Short, D. B., Trotter, K. W. Reczek, D., Kreda, S. M., Bretscher, A., Boucher, R. C., et al. (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19,797ā€“19,801.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Sun, F., Hug, M. J., Lewarchik, C. M., Yun, C., Bradbury, N. A., and Frizzell, R. A. (2000) E3KARP mediates the Association of ezrin and PKA with CFTR in airway cells. J. Biol. Chem. 275 29,539ā€“29,546.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Hall, R. A., Ostedgaard, L. S., Premont, R. T., Blitzer, J. T., Rahman, N., Welsh, M. J., et al. (1998) A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA 95, 8496ā€“8501.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Wang, S., Raab, R. W., Schatz, P. J., Guggino, W. B., and Li, M. (1998) Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS Lett. 427, 103ā€“108.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Reczek, D., Berryman, M., and Bretscher, A. (1997) Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol. 139, 169ā€“179.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Bretscher, A., Reczek, D., and Berryman, M. (1997) Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J. Cell Sci. 110, 3011ā€“3018.

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Yun, C. H., Oh, S., Zizak, M., Steplock, D., Tsao, S., Tse, C. M., et al. (1997) cAMP-mediated inhibition of the epithelial brush border Na+/H+exchanger, NHE3, requires an associated regulatory protein. Proc. Natl. Acad. Sci. USA 94, 3010ā€“3015.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Brandt, S. R., Yun, C. H., Donowitz, M., and Tse, C. M. (1995) Cloning, tissue distribution, and functional analysis of the human Na+/H+exchanger isoform, NHE3. Am. J. Physiol. 269, 198ā€“206.

    Google ScholarĀ 

  12. Yun, C. H., Lamprecht, G., Forster, D. V., and Sidor, A. (1998) NHE3 kinase a regulatory protein E3KARP binds the epithelial brush border Na+/H+exchanger NHE3 and the cytoskeletal protein ezrin. J. Biol. Chem. 273, 25,856ā€“25,863.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Weinman, E. J., Minkoff, C., and Shenolikar, S. (2000) Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. Am. J. Physiol. 279, F393ā€“F399.

    CASĀ  Google ScholarĀ 

  14. Minkoff, C., Shenolikar, S., and Weinman, E. J. (1999) Assembly of signaling complexes by the sodium-hydrogen exchanger regulatory factor family of PDZ-containing proteins. Curr. Opin. Nephrol. Hypertens. 8, 603ā€“608.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Hwang, J. I., Heo, K., Shin, K. J., Kim, E., Yun, C., Ryu, S. H. et al. (2000) Regulation of phospholipase C-beta 3 activity by Na+/H+exchanger regulatory factor 2. J. Biol. Chem. 275, 16,632ā€“16,637.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Kocher, O., Comella, N., Gilchrist, A., Pal, R., Tognazzi, K., Brown, L. F. et al. (1999) PDZK1, a novel PDZ domain-containing protein up-regulated in carcinomas and mapped to chromosome 1q21, interacts with cMOAT (MRP2), the multidrug resistance-associated protein. Lab. Invest. 79, 1161ā€“1170.

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Custer, M., Spindler, B., Verrey, F., Murer, H., and Biber, J. (1997) Identification of a new gene product (diphor-1) regulated by dietary phosphate. Am. J. Physiol. 273, F801ā€“F806.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. White, K. E., Biber, J., Murer, H., and Econs, M. J. (1998) A PDZ domain-containing protein with homology to Diphor-1 maps to human chromosome 1q21. Ann. Hum. Gen. 62, 287ā€“290.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Sudol, M. (1994) Yes-associated protein (YAP65) is a proline-rich phosphopro-tein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9, 2145ā€“2152.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Mohler, P. J., Kreda, S. M., Boucher, R. C., Sudol, M., Stutts, M. J., and Milgram, S. L. (1999) Yes-associated protein 65 localizes p62(c-Yes) to the apical compartment of airway epithelia by association with EBP50. J. Cell Biol. 147, 879ā€“890.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Moyer, B. D., Denton, J., Karlson, K. H., Reynolds, D., Wang, S., Mickel, J. E., et al. (1999) A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J. Clin Invest. 104, 1353ā€“1361.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Mohler, P.J., Kultgen, P.L., Stutts, M.J., Milgram, S.L. (2002). Biochemical Assays for Studying Indirect Interactions Between CFTR and the Cytoskeleton. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicineā„¢, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:383

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:383

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics