Skip to main content

CFTR Degradation and Aggregation

  • Protocol
  • 948 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 70))

Abstract

Defective protein folding is becoming increasingly recognized as a significant cause of human disease, and cystic fibrosis (CF) is a prime example. A number of CF-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) result in a CFTR protein that does not reach the plasma membrane but is instead retained by the cellular quality control system and degraded by the ubiquitin-proteasome system. Misfolded CFTR that cannot be degraded accumulates in the cell as centrosome-associated inclusions of aggregated protein that are replete with proteasome components. In fact, the centrosomal region is a significant site of proteasome concentration in resting cells, suggesting a novel role for this subcellular location in the quality control of protein expression. This chapter gives an overview of CFTR misfolding, degradation, and aggregation, and provides details of methods used in our laboratory to study these processes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Riordan, J. R., Rommens, J. M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S., and Tsui, L.-C. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, M. P., Gregory, R. J., Thompson, S., Souza, D. W., Paul, S., Mulligan, R. C., Smith, A. E., and Welsh, M. J. (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205.

    Article  CAS  PubMed  Google Scholar 

  3. Bear, C. E., Duguay, F., Naismith, A. L., Kartner, N., Hanrahan, J. W., and Riordan, J. R. (1991) Cl-channel activity in Xenopus oocytes expressing the cystic fibrosis gene. J. Biol. Chem. 266, 19,142–19,145.

    CAS  PubMed  Google Scholar 

  4. Sheppard, D. N. and Welsh, M. J. (1999) Structure and function of the CFTR chloride channel. Physiol. Rev. 79, S23–S45.

    CAS  PubMed  Google Scholar 

  5. Lee, M. G., Wigley, W. C., Zeng, W., Noel, L. E., Marino, C. R., Thomas, P. J., and Muallem, S. (1999) Regulation of Cl-/HCO3-exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J. Biol. Chem. 274, 3414–3421.

    Article  CAS  PubMed  Google Scholar 

  6. Schwiebert, E. M., Benos, D. J., Egan, M. E., Stutts, M. J., and Guggino, W. B. (1999) CFTR is a conductance regulator as well as a chloride channel. Physiol. Rev. 79[1], S145–S166.

    CAS  PubMed  Google Scholar 

  7. Thomas, P. J., Ko, Y. H., and Pedersen, P. L. (1992) Altered protein folding may be the molecular basis of most cases of cystic fibrosis. FEBS Lett. 312, 7–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., O’Riordan, C. R., and Smith, A. E. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.

    Article  CAS  PubMed  Google Scholar 

  9. Lukacs, G. L., Mohamed, A., Kartner, N., Chang, X.-B., Riordan, J. R., and Grinstein, S. (1994) Conformational maturation of CFTR but not its mutant counterpart (F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 13, 6076–6086.

    CAS  PubMed  Google Scholar 

  10. Ward, C. L. and Kopito, R. R. (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J. Biol. Chem. 269, 25,710–25,718.

    CAS  PubMed  Google Scholar 

  11. Yang, Y., Janich, S., Cohn, J. A., and Wilson, J. M. (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90, 9480–9484.

    Article  CAS  PubMed  Google Scholar 

  12. Strickland, E., Qu, B.-H., Millen, L., and Thomas, P. (1997) The molecular chaperone Hsc70 assists the in vitro folding of the N-terminal nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 272, 25,421–25,424.

    Article  CAS  PubMed  Google Scholar 

  13. Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D. M. (1999) The Hdj-2Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492–1505.

    Article  CAS  PubMed  Google Scholar 

  14. Loo, M. A., Jensen, T. J., Cui, L., Hou, Y.-X., Chang, X.-B., and Riordan, J. R. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J. 17, 6879–6887.

    Article  CAS  PubMed  Google Scholar 

  15. Pind, S., Riordan, J. R., and Williams, D. B. (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 12,784–12,788.

    CAS  PubMed  Google Scholar 

  16. Ellgaard, L., Molinari, M., and Helenius, A. (1999) Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888.

    Article  CAS  PubMed  Google Scholar 

  17. Wigley, W. C., Fabunmi, R. P., Lee, M. G., Marino, C. R., Muallem, S., DeMartino, G. N., and Thomas, P. J. (1999) Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490.

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert, A., Jadot, M., Leontieva, E., Wattiaux-De Coninck, S., and Wattiaux, R. (1998) F508 CFTR localizes in the endoplasmic reticulum-golgi intermediate compartment in cystic fibrosis cells. Exp. Cell. Res. 242, 144–152.

    Article  CAS  PubMed  Google Scholar 

  19. Ward, C. L., Omura, S., and Kopito, R. R. (1995) Degragation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127.

    Article  CAS  PubMed  Google Scholar 

  20. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135.

    Article  CAS  PubMed  Google Scholar 

  21. Coux, O., Tanaka, K., and Goldberg, A. L. (1996) Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847.

    Article  CAS  PubMed  Google Scholar 

  22. Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380.

    Article  CAS  PubMed  Google Scholar 

  23. Wenzel, T. and Baumeister, W. (1995) Conformational constraints in protein degradation by the 20S proteasome. Nat. Struct. Biol. 2, 199–204.

    Article  CAS  PubMed  Google Scholar 

  24. Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268, 533–539.

    Article  CAS  PubMed  Google Scholar 

  25. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D., and Huber, R. (1997) Structure of 20S proteasome from yeast at 2. 4 A resolution. Nature 386, 463–471.

    Article  CAS  PubMed  Google Scholar 

  26. Yoshimura, T., Kameyama, K., Takagi, T., Ikai, A., Tokunaga, F., Koide, T., Tanahashi, N., Tamura, T., Cejka, Z., Baumeister, W., Tanaka, K., and Ichihara, A. (1993) Molecular characterization of the &#201C;26S&#201D; proteasome complex from rat liver. J. Struct. Biol. 111, 200–211.

    Article  CAS  PubMed  Google Scholar 

  27. Adams, G. M., Falke, S., Goldberg, A. L., Slaughter, C. A., DeMartino, G. N., and Gogol, E. P. (1997) Structural and functional effects of PA700 and modulator protein on proteasomes. J. Mol. Biol. 273, 646–657.

    Article  CAS  PubMed  Google Scholar 

  28. Hochstrasser, M. (1996) Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439.

    Article  CAS  PubMed  Google Scholar 

  29. Ciechanover, A. (1994) The ubiquitin-proteasome proteolytic pathway Cell 79, 13–21.

    Article  CAS  PubMed  Google Scholar 

  30. Lam, Y. A., Xu, W., DeMartino, G. N., and Cohen, R. E. (1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385, 737–740.

    Article  CAS  PubMed  Google Scholar 

  31. Ma, C.-P., Vu, J. H., Proske, R. J., Slaughter, C. A., and DeMartino, G. N. (1994) Identification, purification, and characterization of a high molecular weight ATP-dependent activator (PA700) of the 20S proteasome. J. Biol. Chem. 269, 3539–3547.

    CAS  Google Scholar 

  32. Gray, C. W., Slaughter, C. A., and DeMartino, G. N. (1994) PA28 activator protein forms regulatory caps on proteasome stacked rings. J. Mol. Biol. 236, 7–15.

    Article  CAS  PubMed  Google Scholar 

  33. Dubiel, W., Pratt, G., Ferrell, K., and Rechsteiner, M. (1992) Purification of an 11S regulator of the multicatalytic protease. J. Biol. Chem. 267, 22,369–22,377.

    CAS  PubMed  Google Scholar 

  34. Ma, C.-P., Slaughter, C. A., and DeMartino, G. N. (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain) J. Biol. Chem. 267, 10,515–10,523.

    CAS  PubMed  Google Scholar 

  35. Groettrup, M., Soza, A., Eggers. M., Kuehn, L., Dick, T. P., Schild, H., Rammensee, H.-G., Koszinowski, U. H., and Kloetzel, P.-M. (1996) A role for the proteasome regulator PA28a in antigen presentation. Nature 381, 166–168.

    Article  CAS  PubMed  Google Scholar 

  36. Kloetzel, P. M., Soza, A., and Stohwasser, R. (1999) The role of the proteasome system and the proteasome activator PA28 complex in the cellular immune response. Biol. Chem. 380, 293–297.

    Article  CAS  PubMed  Google Scholar 

  37. Xiong, X., Chong, E., and Skach, W. R. (1999) Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J. Biol. Chem. 274, 2616–2624.

    Article  CAS  PubMed  Google Scholar 

  38. Sato, S., Ward, C. L., and Kopito, R. R. (1998) Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J. Biol. Chem. 273, 7189–7192.

    Article  CAS  PubMed  Google Scholar 

  39. Plemper, R. K. and Wolf, D. H. (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266–270.

    Article  CAS  PubMed  Google Scholar 

  40. Plemper, R. K. and Wolf, D. H. (1999) Endoplasmic reticulum degradation. Reverse protein transport and its end in the proteasome. Mol. Biol. Rep. 26, 125–130.

    Article  CAS  PubMed  Google Scholar 

  41. Sommer, T. and Wolf, D. H. (1997) Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 11, 1227–1233.

    CAS  PubMed  Google Scholar 

  42. Bebok, Z., Mazzochi, C., King, S. A., Hong, J. S., and Sorscher, E. J. (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic deglycosylated intermediary. J. Biol. Chem. 273, 29,873–29,878.

    Article  CAS  PubMed  Google Scholar 

  43. Xiong, X., Bragin, A., Widdicombe, J. H., Cohn, J., and Skach, W. R. (1997) Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin. Invest 100, 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  44. Plemper, R. K., Deak, P. M., Otto, R. T., and Wolf, D. H. (1999) Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. FEBS Lett. 443, 241–245.

    Article  CAS  PubMed  Google Scholar 

  45. Plemper, R. K., Egner, R., Kuchler, K., and Wolf, D. H. (1998) Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J. Biol. Chem. 273, 32,848–32,856.

    Article  CAS  PubMed  Google Scholar 

  46. Wickner, S., Maurizi, M. R., and Gottesman, S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893.

    Article  CAS  PubMed  Google Scholar 

  47. Agashe, V. R. and Hartl, F. U. (2000) Roles of molecular chaperones in cytoplasmic protein folding. Semin. Cell Dev. Biol. 11, 15–25.

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, P. J., Qu, B.-H., and Pedersen, P. L. (1995) Defective protein folding as a basis of human disease. TIBS 20, 456–459.

    CAS  PubMed  Google Scholar 

  49. Gottesman, S., Wickner, S., and Maurizi, M. R. (1997) Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823.

    Article  CAS  PubMed  Google Scholar 

  50. Bercovich, B., Stancovski, I., Mayer, A., Blumenfeld, N., Laszlo, A., Schwartz, A., and Ciechanover, A. (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. JBC 272, 9002–9010.

    Article  CAS  Google Scholar 

  51. Strickland, E., Hakala, K., Thomas, P. J., and DeMartino, G. N. (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J. Biol. Chem. 275, 5565–5572.

    Article  CAS  PubMed  Google Scholar 

  52. Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998) Aggresomes: A Cellular Response to Misfolded Proteins. J. Cell Biol. 143, 1883–1898.

    Article  CAS  PubMed  Google Scholar 

  53. Lange, B. M., Bachi, A., Wilm, M., and Gonzalez, C. (2000) Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252–1262.

    Article  CAS  PubMed  Google Scholar 

  54. Brown, C. R., Doxsey, S. J., Hong-Brown, L. Q., Martin, R. L., and Welch, W. J. (1996) Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J. Biol. Chem. 271, 824–832.

    Article  CAS  PubMed  Google Scholar 

  55. Brown, C. R., Hong-Brown, L. Q., Doxsey, S. J., and Welch, W. J. (1996) Molecular chaperones and the centrosome. A role for HSP 73 in centrosomal repair following heat shock treatment. J. Biol. Chem. 271, 833–840.

    Article  CAS  PubMed  Google Scholar 

  56. Chen, E. Y., Bartlett, M. C., and Clarke, D. M. (2000) Cystic fibrosis transmembrane conductance regulator has an altered structure when its maturation is inhibited. Biochemistry 39, 3797–3803.

    Article  CAS  PubMed  Google Scholar 

  57. Fabunmi, R. P., Wigley, W. C., Thomas, P. J., and DeMartino, G. N. (2000) Activity and regulation of the centrosome-associated proteasome. J. Biol. Chem. 275, 409–413.

    Article  CAS  PubMed  Google Scholar 

  58. Doxsey, S. J. (1998) The centrosome-a tiny organelle with big potential. Nature Genetics 20, 104–106.

    Article  CAS  PubMed  Google Scholar 

  59. Zimmerman, W., Sparks, C. A., and Doxsey, S. J. (1999) Amourphous no longer: the centrosome comes into focus. Curr. Opin. Cell Biol. 11, 122–128.

    Article  CAS  PubMed  Google Scholar 

  60. Urbani, L. and Stearns, T. (1999) The centrosome. Curr. Biol. 9, R315–R317.

    Article  CAS  PubMed  Google Scholar 

  61. Koepp, D. M., Harper, J. W., and Eledge, S. J. (1999) How the Cyclin Became a Cyclin: Tegulated Proteolysis in the Cell Cycle. Cell 97, 431–434.

    Article  CAS  PubMed  Google Scholar 

  62. Bailly, E., Pines, J., Hunter, T., and Bornens, M. (1992) Cytoplasmic accumulation of cyclin B1 in human cells: association with a detergent-resistant compartment and with the centrosome. J. Cell. Sci. 101, 529–545.

    CAS  PubMed  Google Scholar 

  63. Brown, C. R., Doxsey, S. J., White, E., and Welch, W. J. (1994) Both viral (adenovirus E1B) and cellular (hsp70, p53) components interact with centrosomes. J. Cell. Physiol. 160, 47–60.

    Article  CAS  PubMed  Google Scholar 

  64. Crepieux, P., Kwon, H., Leclerc, N., Spencer, W., Richard, S., Lin, R., and Hiscott, J. (1997) IKBa physically interacts with a cytoskeleton-associated protein through its signal response domain. Mol. Cell. Biol. 17, 7375–7385.

    CAS  PubMed  Google Scholar 

  65. Zeng, W., Lee, M. G., Yan, M., Diaz, J., Benjamin, I., Marino, C. R., Kopito, R., Freedman, S., Cotton, C., Muallem, S., and Thomas, P. (1997) Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells. Am. J. Physiol. 273, C442–C455.

    CAS  PubMed  Google Scholar 

  66. Ma, C.-P., Willy, P. J., Slaughter, C. A., and DeMartino, G. N. (1993) PA28, an activator of the 20s proteasome, is inactivated by proteolytic modification of its carboxyl terminus. J. Biol. Chem. 268, 22,514–22,519.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Corboy, M.J., Thomas, P.J., Wigley, W.C. (2002). CFTR Degradation and Aggregation. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicine™, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:277

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:277

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics