Skip to main content

CFTR Expression and ER-Associated Degradation in Yeast

  • Protocol
Cystic Fibrosis Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 70))

Abstract

The most common cause of cystic fibrosis is the deletion of a phenylalanine at position 508 (gDF508) of the cystic fibrosis transmembrane conductance regulator (CFTR). Although the majority of wild-type CFTR is degraded in the endoplasmic reticulum (ER), suggesting that its folding efficiency is low, almost all of the AF508 variant is destroyed (1-4). The process in which the ER quality control system ensures that misfolded or aberrant proteins, such as AF508 CFTR, are proteolyzed and thus prevented from entering the secretory pathway has been termed ER associated degradation, or ERAD (5). It remains unclear how CFTR, or other ERAD substrates, are first selected and then targeted for destruction, but a group of factors known as molecular chaperones may play a pivotal role in this process, as they associate with CFTR in the ER and are released upon protein maturation or degradation (6-8). In accordance with this hypothesis, molecular chaperones are known to aid in protein targeting to proteosome-like complexes in bacteria (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., Riordan, C. R., and Smith, A. E. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827ā€“834.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Lukacs, G. L., Mohamed, A., Kartner, N., Chang, X. B., Riordan, J. R., and Grinstein, S. (1994) Conformational maturation of CFTR but not its mutant counterpart (AF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 13, 6076ā€“6086.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129ā€“135.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Ward, C. L., Omura, S., and Kopito, R. R. (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121ā€“127.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Brodsky, J. L. and McCracken, A. A. (1999) ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Develop. Biol. 10, 507-513. 6. Yang, Y., Janich, S., Cohn, J. A., and Wilson, J. M. (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90, 9480ā€“9484.

    Google ScholarĀ 

  6. Pind, S., Riordan, J. R., and Williams, D. B. (1994) Participation of the endoplas-mic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 12,784ā€“12,788.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Loo, M. A., Jensen, T. J., Cui, L., Hou, Y., Chang, X., and Riordan, J. R. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J. 17, 6879ā€“6887.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Wickner, S., Maurizi, M. R., and Gottesman, S. (1999) Posttranslational quality control: folding, refolding, and degradating proteins. Science 286, 1888ā€“1893.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Teem, J. L., Berger, H. A., Ostedgaard, L. S., Rich, D. P., Tsui, L.-C., and Welsh, M. J. (1993) Identification of revertants for the cystic fibrosis gDF508 mutation using Ste6-CFTR chimeras in yeast. Cell 73, 335ā€“346.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Paddon, C., Loayza, D., Vangelista, L., Solarl, R., and Michaelis, S. (1996) Analysis of the localization of Ste6/CFTR chimeras in a Saccharomyces cerevisiae model for the cystic fibrosis defect CFTRAF508. Mol. Microbiol. 19, 1007ā€“1017.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Huang, P., Stroffekova, K, Cuppoletti, J., Mahanty, S. K., and Scarborough G. A. (1996) Functional expression of the cystic fibrosis transmembrane conductance regulator in yeast. Biochim. Biophys. Acta 1281, 80ā€“90.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  12. Huang, P., Liu, Q., and Scarborough, G. A. (1998) Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator. Anal. Biochem. 259, 89ā€“97.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Zhang, Y. G. Nijbroek, M. L. Sullivan, A. A. McCracken, S. C. Watkins, S. Michaeis and Brodsky, J. L. Distinct chaperone requirements for soluble and membrane ERAD substrates: Hsp70 facilitates the degradation of CFTR in yeast. Mol. Biol. Cell 12, 1303ā€“1314.

    Google ScholarĀ 

  14. Adams, A., Gottschling, D. E., Kaiser, C., and Stearns, T. (1997) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google ScholarĀ 

  15. Oldenburg, K. R., Vo, K. T., Michaelis, S., and Paddon, C. (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451ā€“452.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Ma, H., Kunes, S., Schatz, P. J., Botstein, D. (1987) Plasmid construction by homologous recombination in yeast. Gene 58, 201ā€“216.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H., and Hieter, P. (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119ā€“122.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Hitzeman, R. A., Chen, C. Y., Hagie, F. E., Patzer, E. J., Liu, C. C., Estell, D. A., et al. (1983) Expression of hepatitis B virus surface antigen in yeast. Nucleic Acids Res. 11, 2745ā€“2763.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Stirling, C. J., Rothblatt, J., Hosobuchi, M., Deshaies, R., and Schekman, R. (1992) Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Mol. Biol. Cell 3, 129ā€“142.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Zhang, Y., Michaelis, S., Brodsky, J.L. (2002). CFTR Expression and ER-Associated Degradation in Yeast. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicineā„¢, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:257

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:257

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics