Skip to main content

Transepithelial Impedance Analysis of Chloride Secretion

  • Protocol
Cystic Fibrosis Methods and Protocols

Abstract

Transepithelial chloride secretion requires the activation of both apical membrane chloride channels and basolateral membrane potassium channels. Chloride channels are needed for the apical membrane exit of chloride and potassium channels are needed to repolarize the cell and thereby provide the driving force for chloride exit. Chloride entry on the basolateral membrane Na:K:2Cl- cotransporter must be carefully matched with the apical membrane exit of chloride to maintain cell volume integrity and to achieve a sustained level of chloride secretion. Endogenous secretory agonists acting via intracellular signal transduction cascades (e.g., cAMP, Ca2+) coordinate the activities of the apical and basolateral membrane channels and transporters by mechanisms that are still poorly understood. Moreover, several different types of chloride and potassium channels are thought to contribute to the secretion of chloride. In an effort to better understand the mechanisms that regulate the coordinated activation of apical and basolateral membrane channels and to investigate the relative contribution of various candidate chloride and potassium channels in chloride secretion we have begun to utilize transepithelial impedance analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margineanu, D. G. and Van Driessche, W. (1990) Effects of millimolar concentrations of glutaraldehyde on the electrical properties of frog skin. J Physiol. 427, 567ā€“581.

    CASĀ  PubMedĀ  Google ScholarĀ 

  2. Van Driessche, W., De Vos, R., Jans, D., Simaels, J., De Smet, P., and Raskin, G. (1999) Transepithelial capacitance decrease reveals closure of lateral interspace in A6 epithelia. Eur. J. Physiol. 437, 680ā€“690.

    ArticleĀ  Google ScholarĀ 

  3. Kottra, G. (1995) Calcium is not involved in the cAMP-mediated stimulation of Cl-conductance in the apical membrane of Necturus gallbladder epithelium. Pflugers Arch. 429, 647ā€“658.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Bertrand, C. A., Durand, D. M., Saidel, G. M., Laboisse, C., and Hopfer, U. (1998) System for dynamic measurements of membrane capacitance in intact epithelial monolayers. Biophys. J. 75, 2743ā€“2756.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Bertrand, C. A., Laboisse, C. L., and Hopfer, U. (1999) Purinergic and cholin-ergic agonists induce exocytosis from the same granule pool in HT29-Cl. 16E monolayers. Am. J. Physiol. 276, C907ā€“C914.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Schifferdecker, E. and Fromter, E. (1978) The AC impedance of Necturus gallbladder epithelium. Pflugers Arch. 377, 125ā€“133.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Wills, N. K., Lewis, S. A., and Eaton, D. C. (1979) Active and passive properties of rabbit descending colon: a microelectrode and nystatin study. J Membr. Biol. 45, 81ā€“108.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Schultz, B. D., Singh, A. K., Devor, D. C., and Bridges, R. J. (1999) Pharmacology of CFTR chloride channel activity. Physiol. Rev. 79, S109ā€“S144.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Wangemann, P., Wittner, M., Distefano, A., Englert, H. C., Lang, H. J., Schlatter, E., and Gregger, R. (1986) Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflugers Arch. 407, S128ā€“S141.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Awayda, M. S., Van Driessche, W., and Helman, S. I. (1999) Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes. Biophys. J. 76, 219ā€“232.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Lewis, S. A., Clausen, C. and Wills, N. K. (1996) Impedance analysis of epithelia, in Epithelial Transport (Wills, N. K., Reuss, L., and Lewis, S. A., eds.), pp. 118ā€“145.

    Google ScholarĀ 

  12. Clausen, C. (1989) Impedance analysis in tight epithelia. Meth. Enzymol. 171, 628ā€“663.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Kottra, G. and Fromter, E. (1984) Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures. Pflugers Arch. 402, 409ā€“420.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Kottra, G. and Fromter, E. (1984) Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results. Pflugers Arch. 402, 421ā€“432.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Gordon, L. G. M., Kottra, G., and Fromter, E. (1989) Electrical impedance analysis of leaky epithelia: Theory, techniques, and leak artifact problems. Methods Enzymol. 171, 642ā€“663.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Clausen, C., Machen, T. E., and Diamond, J. M. (1983) Use of AC impedance analysis to study membrane changes related to acid secretion in amphibian gastric mucosal. Biophys. J. 41, 167ā€“178.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Clausen, C., Lewis, S. A., and Diamond, J. M. (1979) Impedance analysis of a tight epithelium using a distributed resistance model. Biophys. J. 26, 291ā€“317.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Wills, N. K., Purcell, R. K., and Clausen, C. (1992) Na+transport and impedance properties of cultured renal (A6 and 2F3) epithelia. J Membr. Biol. 125, 273ā€“285.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Cole, K. S. and Cole, R. H. (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics. J Chem. Phys. 9, 341ā€“351.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Singh, S., Syme, C. A., Singh, A. K., Devor, D. C., and Bridges, R. J. (2001) Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol. Exp. Ther. 296, 605ā€“616.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Singh, A.K., Singh, S., Devor, D.C., Frizzell, R.A., Driessche, W.v., Bridges, R.J. (2002). Transepithelial Impedance Analysis of Chloride Secretion. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicineā„¢, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:129

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:129

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics