Advertisement

Quantitative Analysis of ATP-Dependent Gating of CFTR

  • Allan Powe
  • Zhen Zhou
  • Tzyh-Chang Hwang
  • Georg Nagel
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 70)

Abstract

CFTR, the chloride ion channel encoded by the gene mutated in cystic fibrosis patients, has been the subject of intense investigation since its discovery in 1989 (1). A member of the ATP Binding Cassette (ABC) superfamily, the CFTR channel possesses two nucleotide-binding domains (NBDs) that hydrolyze ATP in vitro and are thought to use the resulting energy to drive the opening and closing of the channel. In addition to its NBDs and the putative pore-forming transmembrane regions, CFTR also contains a unique domain believed to regulate gating by modulating the activity of the two NBDs. This regulatory (R) domain is a substrate for phosphorylation by protein kinase A (PKA). PKA-dependent phosphorylation not only activates but also finely modulates ATP-dependent gating (2).

Keywords

NIH3T3 Cell Patch Clamp Experiment Event List Superfusion Solution CFTR Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Riordan, J. R., Rommens, J. M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsik, N., Chou, J.-L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S. and Tsui, L.-C. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.CrossRefPubMedGoogle Scholar
  2. 2.
    Gadsby, D. C. and Nairn, A., C. (1999) Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev. 79, S77–S107.PubMedGoogle Scholar
  3. 3.
    Anderson, M. P., Berger, H. A., Rich, D. P., Gregory, R. J., Smith, A. E., and Welsh, M. J. (1991) Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67, 775–784.CrossRefPubMedGoogle Scholar
  4. 4.
    Quinton, P. M. and Reddy, M. M. (1992) Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Nature 360, 79–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Nagel, G., Hwang, T. C., Nastiuk, K. L., Nairn, A. C., and Gadsby, D. C. (1992) The protein kinase A-regulated cardiac Cl∼ channel resembles the cystic fibrosis transmembrane conductance regulator. Nature 360, 81–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Li, C., Ramjeesingh, M., Wang, W., Garami, E., Hewryk, M., Lee, D., Rommens, J. M., Galley, K., and Bear, C. E. (1996) ATPase activity of the cystic fibrosis transmembrane conductance regulator. J Biol. Chem. 271, 28,463–28,468.CrossRefPubMedGoogle Scholar
  7. 7.
    Hwang, T. C., Nagel, G., Nairn, A. C., and Gadsby, D. C. (1994) Regulation of the gating of cystic fibrosis transmembrane conductance regulator Cl channels by phosphorylation and ATP hydrolysis. Proc. Natl. Acad. Sci., USA 91, 4698–4702.CrossRefPubMedGoogle Scholar
  8. 8.
    Zeltwanger, S., Wang, F., Wang, G. T., Gillis, K. D., and Hwang, T. C. (1999) Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. J Gen Physiol. 113, 541–554.CrossRefPubMedGoogle Scholar
  9. 9.
    Zou, X. and Hwang, T. C. (2001) ATP hydrolysis-coupled gating of CFTR chloride channels: structure and function. Biochemistry 40, 5579–5586.CrossRefPubMedGoogle Scholar
  10. 10.
    Hwang, T. C., Horie, M., and Gadsby, D. C. (1993) Functionally distinct phosphoforms underlie incremental activation of protein kinase-regulated CL conductance in mammalian heart. J Gen. Physiol. 101, 629–650.CrossRefPubMedGoogle Scholar
  11. 11.
    Berger, H. A., Travis, S. M., and Welsh M. J. (1993) Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases. J Biol. Chem. 268, 2037–2047.PubMedGoogle Scholar
  12. 12.
    Luo, J., Pato, M. D., Riordan, J. R., and Hanrahan, J. W. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases. (1998) Am. J. Physiol. 274, C1397–C1410.PubMedGoogle Scholar
  13. 13.
    Ishihara, H. and Welsh, M. J. (1997) Block by MOPS reveals a conformation change in the CFTR pore produced by ATP hydrolysis. Am. J. Physiol. 273, C1278–C1289.PubMedGoogle Scholar
  14. 14.
    Zhou, Z., Hu, S., and Hwang, T. C. (2001) Voltage-dependent flickery block of an open CFTR channel pore. J Physiol. 532, 435–48.CrossRefPubMedGoogle Scholar
  15. 15.
    Gray, M. A., Harris, A., Coleman, L., Greenwell, J. R., and Argent, B. E. (1989) Two types of chloride channel on duct cells cultured from human fetal pancreas. Am. J. Physiol. 257, C240–C251.PubMedGoogle Scholar
  16. 16.
    Tabcharani, J. A., Chang, X. B., Riordan, J. R., and Hanrahan, J. W. (1991) Phos-phorylation-regulated Cl&#201C; channel in CHO cells stably expressing the cystic fibro-sis gene. Nature 352, 628–631.CrossRefPubMedGoogle Scholar
  17. 17.
    Haws, C., Krouse, M. E., Xia, Y., Gruenert, D. C., and Wine, J. J. (1992) CFTR channels in immortalized human airway cells. Am. J. Physiol. 263, L692–L707.PubMedGoogle Scholar
  18. 18.
    Fischer, H. and Machen, T. E. (1994) CFTR displays voltage dependence and two gating modes during stimulation. J. Gen Physiol. 104, 541–566.CrossRefPubMedGoogle Scholar
  19. 19.
    Dousmanis, A. G. (1996) The CFTR (cystic fibrosis transmembrane conductance regulator) channel: anion permeation and regulation by adenylyl cyclase and ATP hydrolysis. Thesis, Rockefeller University, New York,.Google Scholar
  20. 20.
    Bear, C. E., Li., C., Galley, K., Wang, Y., Garami, E., and Ramjeesingh, M. (1997) Coupling of ATP hydrolysis with channel gating by purified, reconstituted CFTR. J. Bioenerg. Biomembr. 29, 465–473.CrossRefPubMedGoogle Scholar
  21. 21.
    Weinreich, F., Riordan, J. R., and Nagel, G. (1999) Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites. J Gen. Physiol. 114, 55–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Travis, S. M., Berger, H. A., and Welsh, M. J. (1997) Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 94, 11,055–11,060.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu, T., Dahan, D., Evagelidis, A., Zheng, S., Luo, J., and Hanrahan, J. W. (1999) Association of cystic fibrosis transmembrane conductance regulator and protein phosphatase 2C. J Biol. Chem. 274, 29,102–29,107.CrossRefPubMedGoogle Scholar
  24. 24.
    Cohen, P. (1990) The structure and regulation of protein phosphatases. Adv. Second Messenger Phosphoprotein Res. 24, 230–235.PubMedGoogle Scholar
  25. 25.
    Baukrowitz, T., Hwang, T. C., Nairn, A. C., and Gadsby, D. C. (1994) Coupling of CFTR CL channel gating to an ATP hydrolysis cycle. Neuron 12, 473–482.CrossRefPubMedGoogle Scholar
  26. 26.
    Rudy, B. and Iverson, L. E. (eds.) (1992) Ion channels, in Methods in Enzymology, vol. 207. Academic Press, San Diego, CA.Google Scholar
  27. 27.
    Sakmann, B. and Neher, E. (eds.) (1995) Single-Channel Recording 2nd ed., Plenum, New York.Google Scholar
  28. 28.
    Fenwick, E. M., Marty, A., and Neher, E. (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol. 331, 599–635.PubMedGoogle Scholar
  29. 29.
    Wang, F., Zeltwanger, S., Yang, I. C., Nairn, A. C., and Hwang, T. C. (1998) Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J Gen Physiol. 111, 477–490.CrossRefPubMedGoogle Scholar
  30. 30.
    Csanády, L. (2000) Rapid kinetic analysis of multichannel records by a simultaneous fit to all dwell-time histograms. Biophys. J. 78, 785–799.CrossRefPubMedGoogle Scholar
  31. 31.
    Csanády, L., Chan, K. W., Seto-Young, D., Kopsco, D. C., Nairn, A. C., and Gadsby, D. C. (2000) Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. J. Gen Physiol. 116, 477–500.CrossRefPubMedGoogle Scholar
  32. 32.
    Chan, K. W., Csanady, L., Seto-Young, D., Nairn, A. C., and Gadsby, D. C. (2000) Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator’s NH2-terminal nucleotide binding domain. J. Gen. Physiol. 116, 163–180.CrossRefPubMedGoogle Scholar
  33. 33.
    Colquhoun, D. and Hawkes, A. G. (1995) The principles of the stochastic interpretation of ion-channel mechanisms, in Single Channel Recording (2nd ed.), (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp. 397–482.Google Scholar
  34. 34.
    Fischer, H. and Machen, T. E. (1996) The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel. Biophys. J. 71, 3073–3082.CrossRefPubMedGoogle Scholar
  35. 35.
    Zeltwanger, S. (1998) Gating of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels by nucleoside triphosphates. Thesis, University of Missouri, Columbia, Missouri.Google Scholar
  36. 36.
    Gunderson, K. L. and Kopito, R. R. (1995) Conformational states of CFTR associated with channel gating: the role of ATP binding and hydrolysis. Cell 82, 231–239.CrossRefPubMedGoogle Scholar
  37. 37.
    Fendler, K., Grell, E., Haubs, M., and Bamberg, E. (1985) Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes. EMBO J. 4, 3079–3085.PubMedGoogle Scholar
  38. 38.
    Fendler, K., Grell, E., and Bamberg, E. (1987) Kinetics of pump currents generated by the Na+K+-ATPase. FEBS Lett. 224, 83–88.CrossRefPubMedGoogle Scholar
  39. 39.
    Nakao, M. and Gadsby, D. C. (1986) Voltage dependence of Na translocation by the Na/K pump. Nature 323, 628–630.CrossRefPubMedGoogle Scholar
  40. 40.
    Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544.PubMedGoogle Scholar
  41. 41.
    Armstrong, C. M. and Bezanilla, F. (1974) Charge movement associated with the opening and closing of the activation gates of the Na. channels. J. Gen. Physiol. 63 533–552.CrossRefPubMedGoogle Scholar
  42. 42.
    Kaplan, J. H., Forbush, B., and Hoffman, J. F. (1978) Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17, 1929–1935.CrossRefPubMedGoogle Scholar
  43. 43.
    McCray, J. A., Herbette, L., Kihara, T., and Trentham, D. R. (1980) A new approach to time-resolved studies of ATP-requiring biological systems laser flash photolysis of caged ATP. Proc. Natl. Acad. Sci. USA 77, 7237–7241.CrossRefPubMedGoogle Scholar
  44. 44.
    Hilgemann, D. W. (1989) Giant excised cardiac sarcolemmal membrane patches: sodium and sodium-calcium exchange currents. Pflugers Arch. 415, 247–249.CrossRefPubMedGoogle Scholar
  45. 45.
    Hilgemann, D. W. (1995) The giant membrane patch, in Single Channel Record-ing (2nd ed.), (Sakmann, B. and Neher, E., eds.), Plenum, New York.Google Scholar
  46. 46.
    Ikuma, M. and Welsh, M. J. (2000) Regulation of CFTR Cl&#201D; channel gating by ATP binding and hydrolysis. Proc. Natl. Acad. Sci. USA 97, 8675–8680.CrossRefPubMedGoogle Scholar
  47. 47.
    Linsdell, P., Tabcharani, J. A., and Hanrahan, J. W. (1997) Multi-ion mechanism for ion permeation and block in the cystic fibrosis transmembrane conductance regulator chloride channel. J. Gen. Physiol. 110, 365–377.CrossRefPubMedGoogle Scholar
  48. 48.
    Mathews, C. J., Tabcharani, J. A., and Hanrahan, J. W. (1998) The CFTR chloride channel: nucleotide interactions and temperature-dependent gating. J. Membr. Biol. 163, 55–66.CrossRefPubMedGoogle Scholar
  49. 49.
    Aleksandrov, A. A. and Riordan, J. R. (1998) Regulation of CFTR ion channel gating by MgATP. FEBS Lett. 431, 97–101.CrossRefPubMedGoogle Scholar
  50. 50.
    Schultz, B. D., Bridges, R. J., and Frizzell, R. A. (1996) Lack of conventional ATPase properties in CFTR chloride channel gating. J. Membr. Biol. 151, 63–75.CrossRefPubMedGoogle Scholar
  51. 51.
    Aleksandrov, A. A., Chang, X. B., Aleksandrov, L., and Riordan, J. R. (2000) The non-hydrolytic pathway of cystic fibrosis transmembrane conductance regulator ion channel gating. J. Physiol. 528, 259–265.CrossRefPubMedGoogle Scholar
  52. 52.
    Harrington, M. A., Gunderson, K. L., and Kopito, R. R. (1999) Redox reagents and divalent cations alter the kinetics of cystic fibrosis transmembrane conduc-tance regulator channel gating. J. Biol. Chem. 274, 27,536–27,544.CrossRefPubMedGoogle Scholar
  53. 53.
    Connolly, B. A. and Eckstein, F. (1981) Structures of the mono-and divalent metal nucleotide complexes in the myosin ATPase. J. Biol. Chem. 256, 9450–9456.PubMedGoogle Scholar
  54. 54.
    Fasano, O., De Vendittis, E., and Parmeggianni, A. (1982) Hydrolysis of GTP by elongation factor Tu can be induced by monovalent cations. J. Biol. Chem. 257, 3145–3150.PubMedGoogle Scholar
  55. 55.
    Anderson, M. P. and Welsh, M. J. (1992) Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Science 257, 1701–1704.CrossRefPubMedGoogle Scholar
  56. 56.
    Ramjeesingh, M., Li, C., Garami, E., Huan, L. J., Galley, K., Wang, Y., and Bear, C. E. (1999) Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator). Biochemistry 38, 1463–1468.CrossRefPubMedGoogle Scholar
  57. 57.
    Carson, M. R., Travis, S. M., and Welsh, M. J. (1995) The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J. Biol. Chem. 270, 1711–1717.CrossRefPubMedGoogle Scholar
  58. 58.
    Hung, L. W., Wang, I. X., Nikaido, K., Liu, P. Q., Ames, G. F., and Kim, S. H. (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707.CrossRefPubMedGoogle Scholar
  59. 59.
    Armstrong, S., Tabernero, L., Zhang, H., Hermodson, M., and Stauffacher, C. (1998) The 2.5Å structure of the N-terminal ATP-binding cassette of the ribose ABC transporter. Pediatr. Pulmonol. 17, 91–92.Google Scholar
  60. 60.
    Diederichs, K., Diez, J., Greller, G., Muller, C., Breed, J., Schnell, C., Vonrhein, C., Boos, W., and Welte, W. (2000) Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon thermococcus litoralis EMBOJ. 19, 5951–5961.CrossRefGoogle Scholar
  61. 61.
    Berger, A. L., Thomas, P. J., Hunt, J. F., and Welsh, M. J. (2001) Testing the predicted contacts between CFTR and ATP. Biophys. J. 80, 469a.CrossRefGoogle Scholar
  62. 62.
    Vergani, P., Basso, C., Csanády, L., Kopsco, D., Sanchez, R., Sali, A., Nairn, A., C., and Gadbsy, D. C. (2001) Roles of ATP binding and hydrolysis in CFTR Cl- channel gating. Biophys. J. 80, 354a.Google Scholar
  63. 63.
    French, R. J. and Wonderlin, W. F. (1992) Software for acquisition and analysis of ion channel data: choices, tasks and strategies, in Ion Channels, Methods in Enzymology, vol. 207 (Rudy, B. and Iverson, L. E., eds.), Academic Press, San Diego, CA, pp. 711–728.CrossRefGoogle Scholar
  64. 64.
    Berger, H. A., Anderson, M. P., Gregory, R. J., Thompson, S., Howard, P. W., Maurer, R. A., Mulligan, R., Smith, A. E., and Welsh, M. J. (1991) Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J. Clin Invest. 88, 1422–1431.CrossRefPubMedGoogle Scholar
  65. 65.
    Friedrich, T., Bamberg, E., and Nagel, G. (1996), Na(+), K(+)-ATPase pump currents in giant excised patches activated by an ATP concentration jump. Biophys, J. 71, 2486–2500.CrossRefGoogle Scholar
  66. 66.
    Jackson, M. B., Wong, B. S., Morris, C. E., Lecar, H., and Christian, C. N. (1983) Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophys. J. 42, 109–114.CrossRefPubMedGoogle Scholar
  67. 67.
    Nagel, G., Szellas, T., Riordan, J. R., Friedrich, T., and Hartung, K. (2001) Unspecific activation of the epithelial sodium channel by the CFTR chloride channel. EMBO Reports 2, 249–254.CrossRefPubMedGoogle Scholar
  68. 68.
    Powe, A. C., Al-Nakkash, L., and Hwang, T. C. (2001) The role of CFTR’s Walker-A lysine 464 in ATP-dependent gating. Biophys. J. 80, 470a.Google Scholar
  69. 69.
    Sigworth, F. and Sine, S. (1987) Data transformations for improved display and fitting of single channel dwell-time analysis. Biophys. J. 52, 1047–1054.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Allan Powe
    • 1
  • Zhen Zhou
    • 1
  • Tzyh-Chang Hwang
    • 1
  • Georg Nagel
    • 2
  1. 1.Department of Physiology and Dalton Cardiovascular Research CenterUniversity of MissouriColumbia
  2. 2.Max-Planck-Institut für BiophysikJohann-Wolfgang-Goethe-UniversitätBiozentrumGermany

Personalised recommendations